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Intro to DA: The Ensemble Kalman Filter
Jeff Anderson representing the NCAR Data Assimilation Research Section



Want to predict where the ball will land.
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Prediction Model
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Prediction Model

For the ball this is simple:
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Unsure about release point, velocity, angle…
Sample this with an ‘ensemble’ of blue balls.
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Unsure about release point, velocity, angle…
Sample this with an ‘ensemble’ of blue balls.
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Prediction Model Observing System

Need observations (measurements) of the red ball.

All observations have errors.

Observe position of ball every half second after throw.
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Prediction Model Observing System

Data Assimilation

Forecasts
Observations

ASP Summer Colloquium 2016 pg 12



Prediction Model Observing System

Data Assimilation

Analysis

Forecasts
Observations
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Make large ensemble of forecasts.
Closer to observation => more likely.
Fifty likely forecasts are shown (darker blue => more likely).
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Fifty balls at time 0.5 are an ensemble analysis.
Show uncertainty of best estimate of red ball’s location.
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Prediction Model Observing System

Data Assimilation

Analysis

Forecasts
Observations

Initial 
Conditions
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Analysis ensemble are initial conditions for 50 forecasts.
Green is weighted mean of ensemble forecast at time 2.0.
This is best single forecast given observations at time 0.5.
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Prediction Model Observing System

Data Assimilation

Analysis

Forecasts
Observations

Initial 
Conditions
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Start with forecast at time 1.0 that used observations at 
time 0.5.
Add information from observation at time 1.0.
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New ensemble analysis is initial conditions for 50 forecasts.
Green is best single forecast of red ball at time 2.0 given 
observations at time 0.5 and 1.0.
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Next ensemble analysis is initial conditions for 50 forecasts.
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Next ensemble analysis is initial conditions for 50 forecasts.
Green is best single forecast of red ball at time 2.0 given 
observations at time 0.5, 1.0 and 1.5.
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As forecast lead time gets shorter, forecast improves.
Get an estimate of forecast uncertainty.
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As forecast lead time gets shorter, forecast improves.
Get an estimate of forecast uncertainty.
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As forecast lead time gets shorter, forecast improves.
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Also can get ‘reanalysis’ for time 0.5.
Reanalysis uses past and future observations to get best 
possible estimate of where the red ball was.
Cannot be done in real time.
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This thrown ball example is in a 2-dimensional space.
Really a 4-dimensional ‘phase’ space including velocity.

Atmosphere, ocean, land, coupled models are BIG.

But they’re still just a ‘ball’ moving in a HUGE phase space.

As many as 100 million dimensions at present.
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Prediction Model Observing 
System

DART

Analysis

DART provides data assimilation ‘glue’ to build state-of-the-
art ensemble forecast systems for even the largest models.
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Provide State-of-the-Art Data Assimilation capability to:

 Prediction research scientists,

 Model developers,

 Observation system developers,

Who may not have any assimilation expertise.
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 Models small to huge.

 Few or many observations.

 Tiny to huge computational resources.

 Entry cost must be low.

 Competitive with existing methods for weather prediction:
Scientific quality of results,
Total computational effort.
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A system governed by (stochastic) Difference Equation:

(1)

Observations at discrete times:

(2)

Observational error white in time and Gaussian (nice, not essential). 

(3)

Complete history of observations is: 

(4)

Goal: Find probability distribution for state: 

Analysis Forecast (5)

A General Description of the Forecast Problem 
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A General Description of the Forecast Problem 
State between observation times obtained from Difference Equation.
Need to update state given new observations:

(6)

Apply Bayes’ rule:

(7)

Noise is white in time (3), so: 

(8)

Integrate numerator to get normalizing denominator:

(9)
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A General Description of the Forecast Problem 

Probability after new observation:

Prior (forecast)
Likelihood

(10)

Posterior (analysis).
Denominator just normalization.
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Methods for Solving the Forecast Problem: Particle Filter

Independent evolving estimates,
Associate probability with each estimate given observations,
Eliminate unlikely estimates,
Duplicate likely estimates,
Can represent arbitrary probability distribution,
Scales very poorly for large problems.
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Methods for Solving the Forecast Problem: Variational

Four-Dimensional Variational Method:

Minimize a cost function motivated by Eq. 10,

Find optimal fit of evolving model to observations,

Use variational calculus (adjoint) to compute gradient,

State-of-the-art for weather prediction until recently.

Creating model adjoints may require significant effort.

Only provides estimate of mean state.
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Assumes:
linear model Gaussian noise

Gaussian state 

linear forward operator,

Gaussian observation error

Methods for Solving the Forecast Problem: Kalman Filter
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Product of d-dimensional normals with means and and

covariance matrices and is normal.

Product of Two Gaussians

ASP Summer Colloquium 2016 pg 39



Covariance:

Mean: 

Product of Two Gaussians

Product of d-dimensional normals with means and and

covariance matrices and is normal.
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Weight:

We’ll ignore the weight since we immediately normalize products to be PDFs.

Product of Two Gaussians

Product of d-dimensional normals with means and and

covariance matrices and is normal.

Covariance:

Mean: 
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The Kalman Filter

(10)

Numerator is just product of two gaussians.

Denominator just normalizes posterior to be a PDF.
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The Kalman Filter

(10)
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The Kalman Filter

(10)
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The Kalman Filter

(10)

ASP Summer Colloquium 2016 pg 45



Product of d-dimensional normals with means and and

covariance matrices and is normal.

Covariance:

Mean: 

Kalman Filter: Cost Challenges

Must store and invert covariance matrices.
Too big to store for large problems.
Too costly to invert, > O(n2).
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Represent a prior pdf by a sample (ensemble) of N values:

A One-Dimensional Ensemble Kalman Filter
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Example: Predict temperature on a cold day at NCAR.



Use sample mean

and sample standard deviation 

to determine a corresponding continuous distribution

Represent a prior pdf by a sample (ensemble) of N values:

A One-Dimensional Ensemble Kalman Filter
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If posterior ensemble at time t1 is T1,n,  n = 1, …, N

A One-Dimensional Ensemble Kalman Filter: Model Advance
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If posterior ensemble at time t1 is T1,n,  n = 1, …, N ,
advance each member to time t2 with model, T2,n = L(T1, n)  n = 1, …,N .

A One-Dimensional Ensemble Kalman Filter: Model Advance

ASP Summer Colloquium 2016 pg 50



Same as advancing continuous pdf at time t1 …

A One-Dimensional Ensemble Kalman Filter: Model Advance
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Same as advancing continuous pdf at time t1
to time t2 with model L.

A One-Dimensional Ensemble Kalman Filter: Model Advance
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One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Fit a Gaussian to the sample.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Get the observation likelihood.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Compute the continuous posterior PDF.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Use a deterministic algorithm to ‘adjust’ the ensemble.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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First, ‘shift’ the ensemble to have the exact mean of the posterior.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.

Sample statistics are identical to Kalman filter.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Single observed variable,
single unobserved variable.

So far, we have a known                                                        observation 
likelihood for a                                                               single variable.

Now, suppose the  model state has an additional variable,

temperature at Denver Airport.

How should ensemble members update the additional variable?
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

What should 
happen to the 
unobserved 
variable?
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

Update observed 
variable with 
ensemble Kalman
filter.
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior 
joint distribution.

One variable is 
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Update observed 
variable with 
ensemble Kalman
filter.
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

Compute 
increments for prior 
ensemble members 
of observed 
variable.
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

Compute 
increments for prior 
ensemble members 
of observed 
variable.
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Ensemble filters: Updating additional prior state variables 

Using only increments 
guarantees that if 
observation had no 
impact on observed 
variable, the 
unobserved variable is 
unchanged.

Highly desirable!
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior joint 
distribution.

How should the 
unobserved variable be 
impacted?

1st choice: least squares

Equivalent to linear 
regression.

Same as assuming 
binormal prior.
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

How should the 
unobserved variable be 
impacted?

1st choice: least squares

Begin by finding least 
squares fit.
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Next, regress the 
observed variable 
increments onto 
increments for the 
unobserved variable. 

Equivalent to first finding 
image of increment in 
joint space. 
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Ensemble filters: Updating additional prior state variables 
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Next, regress the 
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Regression: Equivalent to 
first finding image of 
increment in joint space.

Then projecting from 
joint space onto 
unobserved priors.
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Regression: Equivalent to 
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Ensemble filters: Updating additional prior state variables 

Now have an updated 
(posterior) ensemble for 
the unobserved variable. 

Fitting Gaussians shows 
that mean and variance 
have changed. 

Other features of the 
prior distribution may 
also have changed.

We’ve expanded this plot. Same 
information as previous slides.

Compressed these two. Compressed these two. 

ASP Summer Colloquium 2016 pg 83



Ensemble filters: Updating additional prior state variables 

Now have an updated 
(posterior) ensemble for 
the unobserved variable. 

Fitting Gaussians shows 
that mean and variance 
have changed. 

Other features of the 
prior distribution may 
also have changed.

ASP Summer Colloquium 2016 pg 84



Ensemble filters: Updating additional prior state variables 
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Properties of Ensemble Kalman Filter

For linear, gaussian problem:
If, ensemble size N>Ncrit

Mean and covariance are identical to Kalman Filter,
Else

Diverges.

Ncrit: Number of positive singular values in SVD of 
covariance matrix.
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How an Ensemble Filter Works for Geophysical Data Assimilation

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.
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How an Ensemble Filter Works for Geophysical Data Assimilation

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.
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How an Ensemble Filter Works for Geophysical Data Assimilation

3. Get observed value and observational error distribution
from observing system.
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How an Ensemble Filter Works for Geophysical Data Assimilation

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).
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How an Ensemble Filter Works for Geophysical Data Assimilation

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Note: Difference between 
various ensemble filter methods 
is primarily in observation 
increment calculation.
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How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.
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How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Theory: impact of observation 
increments on each state 
variable can be handled 
independently!
ASP Summer Colloquium 2016 pg 93



How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

DART updates all state 
variables in parallel. Variables 
randomly assigned to 
processes for load balancing.
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How an Ensemble Filter Works for Geophysical Data Assimilation

6. When all ensemble members for each state variable are 
updated, integrate to time of next observation …
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like weather around a latitude band.
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is perturbed for each of the 40-variables at time 0.
Refer to unperturbed control integration as ‘truth’.
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Assimilate ‘observations’ from 40 random locations.

Interpolate truth to station location.
Simulate observational error: 

Add random draw from N(0, 16) to each.
Start from ‘climatological’ 20-member ensemble.
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Some Error Sources in Ensemble Filters

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation
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Sampling Error: Observations Impact Unrelated State Variables

Plot shows expected absolute value of 
sample correlation vs. true correlation.

Unrelated obs. reduce spread, increase 
error. 

Attack with localization.

Reduce impact of observation on weakly 
correlated state variables.

Let weight go to zero for many ‘unrelated’ 
variables to save on computing.
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Lorenz-96 Assimilation with localization of observation impact
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Lorenz-96 Assimilation with localization of observation impact
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Some Error Sources in Ensemble Filters

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation
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Assimilating in the presence of simulated model error
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dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.

Time evolution for first state variable shown.
Assimilating model quickly diverges from ‘true’ model.



Assimilating in the presence of simulated model error
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dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.



Reduce confidence in prior to deal with model error
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Use inflation.
Simply increase prior ensemble variance for each state variable.
Adaptive algorithms use observations to guide this.



Assimilating with Inflation in Presence of Model Error
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Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.



Uncertainty Quantification with an Ensemble Kalman Filter
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 (Ensemble) KF optimal for linear model, gaussian likelihood, 
perfect model.

 In KF, only mean and covariance have meaning.

 Ensemble allows computation of many other statistics.
 What do they mean? Not entirely clear.

 What do they mean when there are all sorts of error? 
Even less clear. 

 Must Calibrate and Validate results.



DART provides data assimilation ‘glue’ to build ensemble 
forecast systems for  the atmosphere, ocean, land, …

Prediction Model Observing System

DART

Analysis Diagnostics
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Assimilation uses 80 
members of 2o  FV CAM 
forced by a single ocean 

(Hadley+ NCEP-OI2)  
and produces a very   

competitive reanalysis.

O(1 million) 
atmospheric obs are 
assimilated every 
day.

500 hPa GPH
Feb 17 2003

1998-2010
4x daily

is available.

Science: A global atmospheric ensemble reanalysis.
Collaborators: Model Developers at NCAR
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Science: Do new satellite observations of cloud 
motion improve hurricane forecasts?

Atmospheric motion vectors from CIMMS at 
University of Wisconsin.

Collaborator: Ting-Chi Wu, 
Graduate Student, 
University of Miami.
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Wu et al., 2014, MWR, 142, 49–71.

Tropical Cyclones and Atmospheric Motion Vectors
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Science: Where should more observations be taken to 
improve landfall forecasts?

Ensemble sensitivity analysis for Katrina.

Collaborator: Ryan Torn, University at Albany.
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Hurricane Katrina Sensitivity Analysis

Contours are ensemble mean 48h 
forecast of deep-layer mean wind.

Color shows where 
observations could help.
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Prediction Model Observing System

Data Assimilation

Analysis Diagnostics

Identify
Systematic

Errors

ASP Summer Colloquium 2016 pg 115



Science: Diagnosing and correcting errors in the CAM 
FV core.

Collaborator: Peter Lauritzen, CGD.
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Gridpoint noise detected in CAM/DART analysis

CAM FV core - 80 member mean - 00Z 25 September 2006
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Suspicions turned to the polar filter (DPF)

CAM FV core - 80 member mean - 00Z 25 September 2006

ASP Summer Colloquium 2016 pg 118



Continuous polar filter (alt-pft) eliminated noise. 
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Differences mostly in transition region of default filter.
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• The use of DART diagnosed a problem that 
had been unrecognized (or at least 
undocumented).

• Could have an important effect on any physics 
in which meridional mixing is important.

• The problem can be seen in ‘free runs’ - it is 
not a data assimilation artifact.

• Without assimilation, can’t get reproducing 
occurrences to diagnose.
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• Climate change over time scales of 1 to several decades has 
been identified as very important for mitigation and infrastructure 
planning.

• Need ocean initial conditions for the IPCC decadal prediction 
program (and maybe a crystal ball, too!).

Science: Global Ocean data assimilation.
Collaborators: Alicia Karspeck, Steve Yeager, CGD.
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FLOAT_SALINITY 68200
FLOAT_TEMPERATURE 395032
DRIFTER_TEMPERATURE 33963
MOORING_SALINITY 27476
MOORING_TEMPERATURE 623967
BOTTLE_SALINITY 79855
BOTTLE_TEMPERATURE 81488
CTD_SALINITY 328812
CTD_TEMPERATURE 368715
STD_SALINITY 674
STD_TEMPERATURE 677
XCTD_SALINITY 3328
XCTD_TEMPERATURE 5790
MBT_TEMPERATURE 58206
XBT_TEMPERATURE 1093330
APB_TEMPERATURE 580111

These counts are for 1998 & 1999 and are representative.

World Ocean Database T, S observation counts.
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Physical Space: 1998/1999 SST Anomaly from HadOI-SST
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Science: Land surface analysis with DART/CLM.
Collaborator: Yongfei Zhang, UT Austin.
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Land surface analysis with DART/CLM:
Estimate snow water equivalent with observations
of snow cover fraction from satellites (MODIS).
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• 80 member ensemble for onset of NH winter
• Assimilate once per day
• Level 3 MODIS product – regridded to a daily 1 degree grid
• Observation error variance is 0.1 (for lack of a better value)
• Observations can impact state variables within 200km
• CLM variable to be updated is the snow water equivalent “H2OSNO”

Standard 
deviation of the 

snow cover 
fraction initial 
conditions for 

Oct. 2002
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An early result: assimilation of MODIS snowcover
fraction on total snow water equivalent in CLM.

Prior for Nov 30, 2002

Increments (Prior – Posterior)

Focus on the non-zero increments The model state is changing in 
reasonable places, by 
reasonable amounts. At this 
point, that’s all we’re looking for.

kg/m
2

kg/m
2

Thanks Yongfei!
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Science: Regional Atmospheric Chemistry.
Collaborator: Arthur Mizzi, NCAR/ACD.
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WRF-Chem – Weather Research and Forecasting 
Model (WRF) with online chemistry.

Meteorological Observations – NOAA PREPBUFR 
conventional observations.

Chemistry Observations – MOPITT CO retrieval 
profiles (also IASI CO retrievals – results not shown).
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WRF/Chem-DART cycling with conventional meteorological 
observations and MOPITT CO V5 retrieval profiles.

Continuous six-hr cycling (00Z, 06Z, 12Z, and 18Z).
CONUS grid with 101x41x34 grid points and 100 km resolution.
20-member ensemble.
 June 1 - 30, 2008 (112 cycles) study period.
Full state variable/obs interaction.
 Initial and lateral chemical boundary conditions from MOZART-

4 simulation.
Emissions: Biogenic – MEGAN, Anthropogenic – global 

inventories, and Fire – Fire Inventory from NCAR (FINN).
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Two experiments: 
 Exp 1: PREPBUFR conventional obs (CNTL DA).

 Exp 2: MOPITT CO retrieval profiles and PREPBUFR conventional obs
(CHEM DA).
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Science: Global Atmospheric Chemistry.
Collaborators: Jerome Barre,

Benjamin Gaubert, NCAR/ACD.
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Uses global CAM/Chem model, 1 degree.

Have full meteorological assimilation capability already.



MOPITT CO: 
On TERRA satellite

tropospheric profiles
Global coverage in 4 days
Multispectral retrievals

high sensitivity on surface land/day

IASI CO: 
On MetOpA satellite
tropospheric profiles

Global coverage in 1 day
Only thermal infrared

Sensitivity on upper PBL & 
mid troposphere

CAM/Chem Chemical DA System
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Control run: Met Only assimilated MOPITT run: Met + MOPITT assimilated

IASI run: Met + IASI assimilated Combined run: Met + MOP+ IASI assimilated

CAM/Chem Chemical DA System
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A system governed by (stochastic) Difference Equation:

(1)

Observations at discrete times:

(2)

Observational error white in time and Gaussian (nice, not essential). 

(3)

Complete history of observations is: 

(4)

Goal: Find probability distribution for state: 

Analysis Forecast (5)

Parameter Estimation
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A system governed by (stochastic) Difference Equation:

(1)

Parameter Estimation
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A system governed by (stochastic) Difference Equation:

(1)

Most geophysical models have ‘tuning’ parameters.

Model prediction might also depend on ‘external forcing’.

Example: Sources of chemical tracers.

Parameter Estimation
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A system governed by (stochastic) Difference Equation:

(1)

One solution: State augmentation.

Define extended state vector 

Prediction model becomes (just a change in notation):

Parameter Estimation
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Define extended state vector 

Prediction model becomes:

Problem: In general, no time prediction model for parameters.

If we had a prediction model, they would just have been state.

Kalman filter prior covariance comes from prediction model.

Parameter Estimation
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Define extended state vector 

Prediction model becomes:

Prior ensembles for parameters must be specified.

The prior sample covariance controls the impact of observations
on parameters.

If prior covariance is not well-known, estimating parameters can be 
challenging.

Parameter Estimation
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www.image.ucar.edu/DAReS/DART
dart@ucar.edu

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., 
Torn, R., Arellano, A., 2009: The Data Assimilation 
Research Testbed: A community facility.
BAMS, 90, 1283—1296, doi: 10.1175/2009BAMS2618.1 
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