Estimating the global health benefits of air pollution mitigation

SUSAN ANENBERG

ENVIRONMENTAL HEALTH ANALYTICS LLC

NCAR/ASP 2016 SUMMER COLLOQUIUM JULY 25, 2016

Outline

Introduction

Mitigating short-lived climate pollutants

Impacts of excess diesel NOx emissions and benefits of mitigation

Air pollution health impact assessment tools

The big picture: Where does atmospheric science fit in?

Global Burden of Disease 2013 risk factors

Mean rank			Mean rank	All age	Age-standardised
(95% UI)	2000 leading risks	2013 leading risks	(95% UI)	median % change	median % change
1.0 (1-1)	1 Childhood undernutrition	1 High blood pressure	1.0 (1-1)	20% (15 to 26)	-13% (-16 to -9)
2.0 (2-2)	2 High blood pressure	2 Smoking	2.6 (2-4)	5% (–1 to 11)	-23% (-28 to -19)
3.3 (3-4)	3 Smoking	3 High body-mass index	2.8 (2-5)	26% (22 to 31)	-7% (-11 to -5)
4.0 (3–6)	4 Unsafe water	4 Childhood undernutrition	4.2 (3-6)	-45% (-51 to -39)	-50% (-55 to -44)
5.2 (4-8)	5 High body-mass index	5 High fasting plasma glucose	4.6 (3-6)	31% (25 to 36)	-4% (-8 to 0)
6.9 (5–11)	6 Alcohol use	6 Alcohol use	6.9 (5-9)	6% (2 to 11)	-17% (-20 to -13)
7.6 (5–11)	7 Household air pollution	7 Household air pollution	9.1 (8-12)	–10% (–21 to 2)	-28% (-38 to -18)
7.9 (5-11)	8 High fasting plasma glucose	8 Unsafe water	10.4 (8-14)	-37% (-44 to -30)	-43% (-49 to -37)
9.2 (6-12)	9 Unsafe sanitation	9 Unsafe sex	10.8 (8-13)	-3% (-11 to 7)	-20% (-26 to -11)
11.5 (8-14)	10 Unsafe sex	10 Low fruit	10.8 (7-16)	7% (1 to 14)	-22% (-26 to -16)
12.0 (6–17)	11 Suboptimal breastfeeding	11 High sodium	11.4 (5-20)	15% (7 to 24)	-16% (-22 to -10)
12.6 (7–18)	12 Low fruit	12 Ambient particulate matter	11.9 (10–14)	6% (1 to 12)	–17% (–21 to –13)
13.8 (12–15)	13 Ambient particulate matter	13 High total cholesterol	13.4 (9–17)	13% (6 to 22)	-18% (-23 to -12)
13.9 (6–22)	14 High sodium	14 Low glomerular filtration	15.8 (14-18)	24% (19 to 30)	-7% (-11 to -3)
15.9 (13–19)	15 High total cholesterol	15 Low whole grains	16.3 (13-20)	17% (12 to 23)	-14% (-18 to -10)
17.3 (14–21)	16 Iron deficiency	16 Unsafe sanitation	17.0 (14-20)	-42% (-48 to -36)	-47% (-53 to -42)
17.3 (15–21)	17 Handwashing	17 Low physical activity	18.5 (16-21)	20% (15 to 27)	–13% (–17 to –9)
18.8 (16-21)	18 Low whole grains	18 Iron deficiency	18.6 (14-22)	–10% (–14 to –7)	-19% (-22 to -16)
19.6 (18-22)	19 Low glomerular filtration	19 Suboptimal breastfeeding	18.6 (14-23)	-40% (-47 to -32)	-44% (-51 to -37)
21.0 (19-22)	20 Low vegetables	20 Low vegetables	20.2 (18-22)	4% (-2 to 10)	-24% (-28 to -20)
21.1 (19-22)	21 Low physical activity	21 Handwashing	22.5 (21-25)	-37% (-44 to -31)	-43% (-49 to -37)
23.9 (23-27)	22 Low nuts and seeds	22 Drug use	23.1 (22-25)	33% (27 to 40)	10% (5 to 15)
25.0 (23-30)	23 Vitamin A deficiency	23 Low nuts and seeds	24.0 (21-28)	2% (-3 to 8)	-25% (-29 to -21)
25.3 (23-28)	24 Drug use	24 Low omega-3	25.9 (23-29)	16% (7 to 27)	-15% (-21 to -7)
27.2 (24-32)	25 Low omega-3	25 Low fibre	26.1 (24-28)	15% (3 to 29)	-16% (-24 to -5)

(Institute for Health Metrics and Evaluation, 2015)

Risk assessment framework

Air pollution epidemiology

PM_{2.5} concentration-response relationships

Burnett et al. 2014, Pillarisetti et al. 2016

Ozone concentration-response relationship

Study	Concentration metric	Risk estimates
Bell et al. (2004)	10 ppb increase in 8-hr daily max	Cardiopulmonary: 1.0052 (1.0027-1.0077)
Jerrett et al. (2009)	10 ppb increase in summer mean of 1hr daily max	Respiratory: 1.04 (1.01-1.067)
Turner et al. (2016)	10 ppb increase in annual mean of 8hr daily max	Respiratory: 1.12 (1.08-1.16) Circulatory: 1.03 (1.01-1.05)

Health impact function

Estimated impacts of $PM_{2.5}$ in the U.S.

PM_{2.5} associated with 130,000 - 320,000 premature deaths in the U.S. in 2005 (5.4% of all deaths nationwide)

Other Effects:

Adults:

- •18,000,000 lost work days (age 18-65)
- •180,000 heart attacks (age 17 and older)
- •83,000 cases of chronic bronchitis (age 26 and older)
- •62,000 hospitalizations for cardiovascular effects (age 17 and older)
- •30,000 hospitalizations for respiratory effects (all ages)

Children:

- •110,000 emergency department visits related to asthma (<18 years of age)
- •200,000 cases of acute bronchitis (age 8-12)
- •2,500,000 cases of exacerbation of asthma (age 6-18)

Percentage of total deaths due to PM2.5 Krewski et al. (2009) PM mortality estimate <2.5%</p>
2.5 to 3.9%
4 to 5%
5.1 to 6.1%

6.1 to 9%

PM_{2.5} and ozone global burden of disease estimates

Figure 17.1 Cities from which data on exposure to PM₁₀ or TSP during 1985–1999 are available from monitoring cites

2004: **Surface air quality monitors** used to estimate 800,000 premature deaths associated with urban PM_{2.5} (Cohen et al. 2004)

2010: Global chemical transport model used to estimate 3.7 million $PM_{2.5}$ deaths and 700,000 ozone deaths globally (Anenberg et al. 2010) 2012: Satellite observations, global chemical transport model, and ground observations combined to estimate 3.2 million PM_{2.5} deaths and 152,000 ozone deaths (Lim et al. 2012) 2015: **2012 methods refined** to estimate 2.9 million PM_{2.5} deaths and 237,000 ozone deaths (Forouzanfar et al. 2015, Apte et al. 2015) Using atmospheric models to estimate global air pollution health impacts

j9W

Disadvantages: 30°S -

- Incomplete coverage (esp. in ٠
- 60°Sdeveloping world)
 - May not represent exposure
- 90°S-18(accurately for people living far from monitor

60°N -

30°N -

0° -

Cannot conduct experiments sympole denote closed of indulty

Disadvantages:

- Simulated concentrations may not be accurate
- Coarse resolution obscures fine spatial gradients of concentration (may miss urban peaks)

Can leverage satellite observations for present-day

Global impacts of air pollution

Policy scenarios for mitigating short-lived climate pollutants: BC and methane

decadal global

UNEP/WMO Integrated Assessment of Black Carbon and Tropospheric Ozone

Screened ~2000 emission control measures in GAINS database

Identified 14 specific BC and methane emission control measures based on potential benefits for near-term climate

Examined 5 emission scenarios:

- Present-day (2005)
- 2030 reference (World Energy Outlook, IEA 2009)
- Methane measures
- Methane + BC Group 1 measures (technological i.e. diesel particulate filters, improving biomass cook stoves)
- Methane + BC Group 1 + BC Group 2 measures (policy i.e. elimination of high-emitting vehicles and biomass cook stoves)

Calculated climate, health, agricultural, and economic benefits

Near-term climate benefits

UNEP/WMO Integrated Assessment of BC and Ozone, 2011; Shindell et al. Science, 2012

Δ global pop.-weighted avg. PM_{2.5} conc. relative to 2030 reference

0

Anenberg et al. EHP, 2012

-5

5 μg/m³

Δ global pop.-weighted avg. ozone conc. relative to 2030 reference

Change in PM_{2.5} and ozone-related premature deaths relative to 2030 reference

Benefits of mitigating short-lived climate forcers

Change in PM_{2.5} and ozone-related premature deaths relative to 2005

Short-lived Climate Pollutants: Key messages

In addition to the climate benefits, fully implementing these 14 measures could:

- Reduce global population-weighted average surface PM_{2.5} and ozone concentrations by 23-34% and 7-17%
- Avoid 0.6-4.4 and 0.04-0.52 million PM_{2.5} and ozone-related deaths in 2030
- >80% of health benefits occur in Asia

BC measures achieve 98% of health benefits from all measures

- Associated ozone precursor and OC reductions
- Stronger mortality relationship for PM_{2.5} relative to ozone

Health benefits from replacing biomass and coal stoves with cleaner fuels and stoves are greatest and are underestimated

Climate and Clean Air Coalition to Reduce SLCPs

Excess diesel vehicle NOx emissions

Diesels emit ~70% of global transportation emissions of nitrogen oxides (NOx), a key PM_{2.5} and ozone precursor.

All major vehicle markets have implemented motor vehicle emission control programs

- Most stringent: Euro VI and U.S. EPA 2010 for heavy-duty vehicles and Euro 6 and Tier 2 for light-duty vehicles
- ~70% of vehicles globally are certified to European-based standards, with the remainder certified primarily to U.S. standards
- U.S. phasing in LEV III/Tier 3 standards for light-duty vehicles for model years 2017-2025
- California also established a voluntary low NOx standard for heavy-duty vehicles beginning with model year 2010

However, diesel vehicles have historically emitted far more NOx under real-world operating conditions than during laboratory certification testing

- U.S.: up to 40x higher for Volkswagen cars with defeat devices (U.S. EPA 2015)
- Europe: average 7x higher (Franco et al. 2014)
- Japan: average 5x higher (MLIT 2016)

A minority of cars tested below Euro 6 emission limits, demonstrating that manufacturers are technically capable of meeting low NOx emissions under a range of real-world operating conditions

Impacts and mitigation of excess diesel NOx emissions in 11 major vehicle markets

Developed inventory of real-world diesel NOx emissions in 2015 from light- and heavy-duty onroad vehicles in 11 major markets representing 80% of 2014 global diesel vehicle sales • Australia, Brazil, Canada, China, EU-28, India, Japan, Mexico, Russia, South Korea, U.S.

Developed realistic diesel NOx emission policy scenarios for year 2040 considering specific circumstances of each country

Used global chemical transport modeling (GEOS-Chem) to simulate impacts of NOx emission changes on PM_{2.5} and ozone concentrations

Quantified impacts on global $PM_{2.5}$ and ozone-related mortality, crop yields, and climate change for:

- Damages of real-world non-compliance of diesel vehicles in 2015 ("excess diesel NOx")
- Potential benefits of tighter diesel NOx emission standards by 2040

Survey of ambient air pollution health impact assessment tools

Many assessment contexts, including:

- National ambient air quality standards regulatory support in data-rich countries
- National ambient air quality standards regulatory support in data-poor countries
- Concentrations reduced to specific levels, like WHO air quality guidelines
- Emissions reduced by multi-governmental agreements (e.g. long-range transport)
- Emissions reduced by international development projects (e.g. World Bank)

Advantages of computer-based tools in estimating air pollution health impacts:

- Simplicity (lowers barrier of entry for new analysts)
- Consistency
- Comparability among assessments

Little information exists about various air pollution health impact assessment tools.

Sample results for technical characteristics

Characteristic	AirCounts TM	AIRQ2.2	BenMAP-CE	EBD	GMAPS	IOMLIFET	LEAP-IBC	SIM-Air	TM5-FASST
PM _{2.5} concentration- response									
relationship:		Υ.	v			v	v		
American Cancer	v	X	X		v	X	X	v	V
Society ^(3,56)	А	А	Α		А	Α	Α	А	х
GBD Integrated			Х	Х			In prep		Х
Exposure Response ⁽¹⁵⁾									
Other		Х	Х						
Population data									
source:									
User-defined		Х	X	Х		X			
United Nations	X								X
CIESIN ^a		X			X		X	X	X
Other			X						
Baseline incidence									
data source:									
User-defined		X		Х		X			
World Health	X		X		Х			Х	Х
Organization									
Other							X	Х	

Anenberg et al, Risk Analysis, 2015 ²⁶

Exposure information source

Exposure Information Source	User Input	Global Scope	Regional Scope
Any concentration input by user	Concentration	BenMAP-CE ^a AirQ2.2 IOMLIFET	EBD
In situ monitor	Concentration		Aphekom ^b
Global chemical transport model (input by user)	Concentration		ĒVA
Regional or urban atmospheric chemistry model (input by user)	Emissions	SIM-Air	EVA
Reduced-form chemical transport model	Emissions	LEAP-IBC ^c TM5-FASST ^d	EcoSense ^d
Reduced-form econometric model Intake fraction (primary PM _{2.5} only)	Economic and climate indicators Emissions	GMAPS ^e AirCounts ^{TM f}	

Anenberg et al, Risk Analysis, 2015

Survey of ambient air pollution health risk assessment tools: key findings

- Key commonalities: PM2.5, mortality, concentration-response functions
- Key differences: exposure information source, format
- Trade-off between technical refinement and accessibility
- Select for the appropriate geographical scope, resolution, and maximum degree of technical rigor within resource constraints
- Need a systematic intercomparison among tool inputs, assumptions, calculations
- Opportunities to better account for multiple sources of uncertainty and integrate multiple stressors

The big picture: Where does atmospheric science fit in?

In short, at all steps of air pollution risk assessment: Hazard identification, exposure assessment, exposure response relationship, risk characterization

Advances in atmospheric science have improved awareness of air pollution health risks and contributed to policy development around the world. Some evidence:

- Global Burden of Disease study and other air pollution health impact assessments
- Studies quantifying the public health benefits of policies related to air quality and climate change
- Policy analysis tools enabling health impact estimates across a range of assumptions, scenarios, locations

And they will continue having an impact! For example, by:

- Narrowing uncertainties in exposure estimates
- Elucidating impacts of climate change and its mitigation on emissions, concentrations, atmospheric chemistry
- Improving understanding of impacts across concentrations, populations, pollution mixtures
- Enabling development of tools to quantify multiple impacts of air pollution and climate change (health, climate, agriculture, ecosystems, etc.)

Questions?

Interdisciplinary analyses are team efforts. This work would not have been possible without:

Drew Shindell, Daven Henze, Forrest Lacey, Ray Minjares, Josh Miller, Zig Klimont, Chris Malley, Lisa Emberson, Rita van Dingenen, Jason West, Bryan Hubbell, Neal Fann, and many other collaborators

Contact me at susan.anenberg@envhealthanalytics.com.