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Bayesed and Confused
It was all about our initial beliefs (and how you trust them), updating 
our beliefs with ‘objective’ (but incomplete/imperfect) information



Bayesed and Confused

the use of our initial belief (and its uncertainty) to make inference in 
light of limited information 



Bayesian Update Illustrated

◃ p(x) from propagation step for one-dimensional example: state x is
a scalar
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Bayesian Update

Source: Chris Snyder/NCAR  (in Blayo et al., 2015) - Oxford Univ. Press 



Bayesian Update Illustrated

◃ observation likelihood p(y|x) for y = 0.8
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Bayesian Update Illustrated

◃ observation likelihood p(y|x) for y = 0.8
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Bayesian Update

Source: Chris Snyder/NCAR  (in Blayo et al., 2015) - Oxford Univ. Press 



Bayesian Update Illustrated

◃ updated p(x|y)
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Bayesian Update Illustrated

◃ updated p(x|y)
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Calculating the Conditional PDF (cont.)

Bayes’ rule
◃ update pdf for xk given obs at tk

p(xk|y
o
k, Y

o
k−1) =

p(yo
k|xk, Y o

k−1
)p(xk|Y o

k−1
)

p(yo
k|Y

o
k−1

)

◃ for our obs, p(yk|xk, Y o
k−1

) = p(yk|xk) if ηk and ϵk are independent
of earlier times

◃ observation likelihood p(yo
k|xk) considered as function of xk for

known yo
k

Observation likelihood
◃ p(yk|xk) is determined by obs equation and stats of ϵk.

◃ example: if ϵk ∼ N(0,R), then yk|xk ∼ N(h(xk),R)

Bayesian Update

Source: Chris Snyder/NCAR  (in Blayo et al., 2015) - Oxford Univ. Press 



Importance of Covariances

◃ 2D: x = (x1, x2)

◃ forecast/prior
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The effect of the update step on an unobserved variable.
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Importance of Covariances

◃ analysis/posterior, [x1, x2|y]

◃ Cov(x1, x2) provides information on unobserved variable
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Importance of Covariances
Importance of Covariances

◃ observation, y = xt
1 + Gaussian noise = 1.4

◃ observation likelihood independent of x2
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Source: Chris Snyder/NCAR  (in Blayo et al., 2015) - Oxford Univ. Press 



Kalman Filter (Review)

Forecast Step

!!!!! = !!!!! !

is nxn state transition matrix (propagator, 
dynamical model)

!! !
!!! ! is nx1 state vector at time k

!!!!! ! is nx1 state vector at time k+1



Kalman Filter

Forecast Step

!!!!! = !!!!! !

!!! = !!!!! !

Without observations to assimilate, the evolution 
of the state can be written as:

!!! = !!!!! = !!!!!!! !
!!! = !!!!! = !!!!!!!!! !

!!! = !!!!!!!!! = !!!!!!!!⋯!!!!! !



Kalman Filter
Forecast Step

!!!!! = !!!!! !

!!! !is nxn error covariance matrix of the state at time k
is nxn error covariance matrix of the state at 
time k+1

!!!!! !

The evolution of the error covariance is the main 
difference between an OI (3D-Var) and KF

!!!!! = !!!!!!! + !! = !!! + !! !

is called the predictability term!!! !
!! !is an nxn random error covariance (model error)



Kalman Filter

Forecast Step

!!!!! = !!!!! !

But this is challenging (in fact infeasible) for large 
dimensions (n~106).

This is where approximations come into play.

!!!!! = !!!!!!! + !! = !!! + !! !



Analysis Step

Kalman Filter

!!!!! = !!!!! + !!!! !!!!! − !!!!!!!!! !

is an mx1 observation vector at time k+1!!!!! !
is an mxn observation operator at time k+1!!!!!
is an mxm observation error covariance at 
time k+1

!!!!!

is an nx1 analysis state vector at time k+1!!!!! !

!!!! = !!!!! !!!!
! !!!!!!!!! !!!!

! + !!!!
!!!



Analysis Step

Kalman Filter

!!!!! = !!!!! + !!!! !!!!! − !!!!!!!!! !

is an mx1 observation vector at time k+1!!!!! !

Since the observation error is typically assumed as 
diagonal (independent), one can also assimilate 
sequentially for each observation, rather than assimilating 
the whole observation vector (saves space and minimize 
numerical errors).

!!!! = !!!!! !!!!
! !!!!!!!!! !!!!

! + !!!!
!!!



Analysis Step

Kalman Filter

!!!!! = !!!!! + !!!! !!!!! − !!!!!!!!! !

This operator can be linear or non-linear. In many cases, 
this matrix is sparse. But errors in formulating this can 
also exist (not exactly representing reality).

is an nxm observation operator at time k+1!!!!!

!!!! = !!!!! !!!!
! !!!!!!!!! !!!!

! + !!!!
!!!



Analysis Step

Kalman Filter

!!!!! = !!!!! + !!!! !!!!! − !!!!!!!!! !

The Kalman gain matrix can be approximated as well 
(sub-optimal) based on our approximations of the 
forecast error covariance.

!!!! = !!!!! !!!!
! !!!!!!!!! !!!!

! + !!!!
!!!
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Analysis Step

Kalman Filter

!!!!! = !!!!! + !!!! !!!!! − !!!!!!!!! !

!!!!! = !!!!!! − !!!!!!!!!!!!! !

!!!!! = !!− !!!!!!!! !!!!! !
Has many forms:

!!!! = !!!!! !!!!
! !!!!!!!!! !!!!

! + !!!!
!!!

!!!!! = !!!!!! − !!!!! !!!!
! !!!!!!!!! !!!!

! + !!!!
!!!!!!!!!!! !

!!!!! = !!!!! !! + !!!!
! !!!! !!!!!!

!!
!

!!!!! = !!− !!!!!!!! !!!!! !!− !!!!!!!! ! + !!!!!!!!!!!!
! !



An Approach to Parameter Estimation

Extensions of the Kalman filter can be used to estimate 
unknown system parameters.

These parameters can be either related to the 
dynamics and/or observation operator.  It is also 
possible to estimate parameters related to the statistics 
of the errors involved in the problem.



where si is now in units of [molecules cm-3 s-1]. The Eulerian advective form is 
 

 i i
i

a

C s
C

t n
∂

+ ⋅ =
∂

v ∇  (4.8) 

 
and the Lagrangian form is 

 

 i i

a

dC s
dt n

=   (4.9) 

 
 
The transport and local terms involve a number of different processes operating in the 
model environment. The continuity equation is thus usefully represented for model 
purposes as a sum of terms describing the different processes for which the model 
provides independent formulations. For example, the Eulerian form may be decomposed 
as 
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 (4.10) 

 
where the terms on the right hand side represent successively the contributions of 
advection, turbulent mixing, convection, wet scavenging by precipitation, chemistry, 
emissions, and dry deposition. We describe the formulations for each of these terms in 
the following sub-sections. The Lagrangian form using the total derivative may be 
similarly decomposed but without the transport terms; a separate algorithm is needed to 
describe the Lagrangian transport of air parcels and this is also described below. 
 

4.2.2. Advection 
 
Advection describes transport by the wind resolved on the model scale. The wind 
velocity vector v is then a spatial and temporal average over the model grid and time step. 
The corresponding mass flux is ( , , ) ( , , )x y z T T

i i i i i iF F F u v wρ ρ= = =F v  Consider an 
elemental volume dV = dxdydz centered at (x, y, z), and a wind velocity component u in 
the x-direction. The corresponding mass flux for species i is ρx

i iF u=  [kg m-2 s-1]. The 
flow rate into the volume (kg s-1) is ( / 2)x

iF x dx dydz−  and the flow rate out of the 
volume is ( / 2)x

iF x dx dydz+  (Figure 4.1). The change per unit time in the concentration 
ρi within the volume is then given by  
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Eq. 4.10 of Brasseur and Jacob, 2016

!" #$%& = ($ !) #$ + +$,												+$~/(0, 23)	

Forward Model



Hierarchical Models

p(state, parameters|data) ∝ 
p(data|state, parameter) x 

p(state|parameter) p(parameter)

for Gaussian statistics, this is equivalent to 
Generalized Inverse formulation

Wikle and Berliner (2007), Evensen (2009)



An Approach to Parameter Estimation

Let’s look back at our discrete system:

and the following observational process:

where the sequence of the noises are Gaussian and mutually 
uncorrelated, i.e.

!!!~! 0,!! , !!! !!~! 0,!! !

!!!!! = !!(!)!!! + !!! !

!!!!! = !!!!!!!!! + !!!!! !



An Approach to Parameter Estimation

The system does not however represent the most general form 
for problems of parameter estimation, since we are assuming that 
the equations are linear in the state variable.
Another simplification in this system is that the observation 
function is taken as known, with no parameters to be 
determined to describe it.

!!!!! = !!(!)!!! + !!! !

Even with all these simplifications, the system is sufficient to 
exemplify the main idea of the approach of parameter 
estimation.

dynamical process:
observational process: !!!!! = !!!!!!!!! + !!!!! !



An Approach to Parameter Estimation

!!!!! = !!(!)!!! + !!! !dynamical process:
observational process:

The variable     represents an p-vector of constant, but unknown, 
coefficients that we intend to estimate. 

If we imagine that the parameters      are functions of time, the 
fact that they are in reality constant can be expressed as:

!!

!!

! = !!!!! = !!! !

!!!!! = !!!!!!!!! + !!!!! !



An Approach to Parameter Estimation

!!!!! = !!(!)!!! + !!! !dynamical process:
observational process:

This produces an extra equation that we can append to the 
system above, to augment the state vector, that is:

!!!!! ≡ !!!!!

!!!!! !

where n+p vector    is now re-defined state variable. 
Unfortunately, this procedure does not lead to anything in terms 
of estimating     .!!

!! !

!!!!! = !!!!!!!!! + !!!!! !



An Approach to Parameter Estimation

!!!!! = !!(!)!!! + !!! !dynamical process:
observational process:

To be able to actually estimate    through say the Kalman filter, it 
is necessary to treat the vector of deterministic, constant and 
unknown parameters as if it were a random vector. Thus we 
write the equation for the parameters to be estimated as:

!!

!!!!! = !!! + !! !
where       is a p-random vector with assumed known statistics!! !
!!~! 0, !! !taken to be uncorrelated from the errors of 

the system.

!!!!! = !!!!!!!!! + !!!!! !



An Approach to Parameter Estimation

!!!!! = !!(!)!!! + !!! !dynamical process:
observational process:

The above equations can be re-written in the form:

!!!!! = ! !!! + !!!
!! !

!!!!! = !!!!!!!!! + !!!!! !

!!!!! = !!!! ! !!!!!

!!!!! + !!!!! !



An Approach to Parameter Estimation

The above equations can be re-written in the form:

!!!!! = ! !!! + !!!
!! !

!!!!! = !!!! ! !!!!!

!!!!! + !!!!! !

! !!! ≡ !! !!! !
! ! !!! =

!! !!! !!!
!!!

!



An Approach to Parameter Estimation

Let us assume that initially, at k=0, the estimates !!! ,!!! !

!!! ≡
!!!
!!! = ! !!!

!!
!

with error covariance

!!! = !"# !!! , !!! !
! !!

!



An Approach to Parameter Estimation

Following the extended Kalman filter equations, we need to 
calculate the Jacobian of the modified dynamics.

!! !!! ≡ !! !!!
! !!! !

!!!!!!!
! ! !!! = !! !!! !!!

!!!
!

!! !!! =

!! !!! !!!
! !!! !

!!
!!!!

!

!! !!! !!!
! !!! !

!!
!!!!

!

!!!!
! !!! !

!!
!!!!

!

!!!!
! !!! !

!!
!!!!

!

!

!! !!! = !(!!!)
!! !!!
! !!! !

!!!!!!!
!!!

! !
!



An Approach to Parameter Estimation

Then the forecast step of the Kalman filter becomes
!!!!!

!!!!! = !(!!!)!!!
!!! !

!!!!! = ! !!!
!! !!!
! !!! !

!!!!!!!
!!!

! !
!!! !

! !!!
!! !!!
! !!! !

!!!!!!!
!!!

! !

!

+ ! !! !
! !! !
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An Approach to Parameter Estimation

and the analysis step becomes

!!!! = !!!!! !!!! ! ! !!!! ! !!!!! !!!! ! ! + !!!!
!!
!

!!!!! = !− !!!! !!!! ! !!!!! !

!!!!!

!!!!! = !!!!!

!!!!! + !!!! !!!!! − !!!!!!!!! !

≝ "#$%&
"'$%&
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An Approach to Parameter Estimation

Forecast Step

!!!!!

!!!!! = !(!!!)!!!
!!! !

!!!!! = ! !!!
!! !!!
! !!! !

!!!!!!!
!!!

! !
!!! !

! !!!
!! !!!
! !!! !

!!!!!!!
!!!

! !

!

+ ! !! !
! !! !

Analysis Step

!!!! = !!!!! !!!! ! ! !!!! ! !!!!! !!!! ! ! + !!!!
!!
!

!!!!! = !− !!!! !!!! ! !!!!! !
!!!!!

!!!!! = !!!!!

!!!!! + !!!! !!!!! − !!!!!!!!! !



Let’s look at an example.
(kalman_filter_augmented2b.m)

Consider a slightly modified system of our previous tutorial:

What if we do not know the wind speed µ and production rate 
E? Here, we also want to estimate these as our parameters 
together with estimating our state [a]?

The numerical solution of  of which is:

![#]
!% + ' ![#]!( = * !

+[#]
!(+ + ,[#]																																																																						(,/. 1)	

!"#$% = '( + *+ !",%# + 1 − 2'( − *+ !"# + '( !"$%# + 0∆t 	!"# 							(05. 2)	





Let’s run kalman_filter_augmented2b.m



Chem DA Applications



Estimating Sources of 
Carbon Monoxide: 

Some Top-down Approaches 



1. Bayesian Synthesis Inversion  
  (Inverse Modeling or IM) 

2. Joint State-Source Estimation  
  (Data Assimilation or DA)  

3. Two-step approach 
      (DA + IM)

Top-Down Approaches Using  
CAM-Chem/DART Or WRF-Chem/DART



Carbon Monoxide in the Atmopshere
CARBON MONOXIDE IN ATMOSPHERE 

Source: incomplete combustion!
Sink: oxidation by OH (lifetime of 2 months)!
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3.1 ONE-BOX MODEL

A one-box model for an atmospheric species X is shown in Figure
3-1. It describes the abundance of X inside a box representing a
selected atmospheric domain (which could be for example an urban
area, the United States, or the global atmosphere). Transport is
treated as a flow of X into the box (Fin) and out of the box (Fout). If
the box is the global atmosphere then Fin = Fout = 0. The production
and loss rates of X inside the box may include contributions from
emissions (E), chemical production (P), chemical loss (L), and
deposition (D). The terms Fin, E, and P are sources of X in the box;
the terms Fout, L, and D are sinks of X in the box. The mass of X in
the box is often called an inventory and the box itself is often called
a reservoir. The one-box model does not resolve the spatial
distribution of the concentration of X inside the box. It is
frequently assumed that the box is well-mixed in order to facilitate
computation of sources and sinks.

 Figure 3-1  One-box model for an atmospheric species X

3.1.1 Concept of lifetime

The simple one-box model allows us to introduce an important and
general concept in atmospheric chemistry, the lifetime. The lifetime
τ of X in the box is defined as the average time that a molecule of X
remains in the box, that is, the ratio of the mass m (kg) of X in the
box to the removal rate Fout + L + D (kg s-1):

(3.1)

The lifetime is also often called the residence time and we will use
the two terms interchangeably (one tends to refer to lifetime when

production

Emission

X
P

Deposition

loss
L

 inflow Fin outflow Fout

"box"

Chemical Chemical

DE

Atmospheric

τ m
Fout L D+ +
------------------------------=

!

!

!

!

!
natural'/anthropogenic'
combus3on4related'

processes'
We model the evolution 

of CO as:

Note: CO affects OH (main 
atmospheric oxidant), & as a 
consequence may impact O3 and 
C H 4 ( I m p l i c a t i o n s f o r L W 
radiation) 

!!!∆! = ! !! ,!! , !"# ! ,! !



Bayesian Synthesis Inversion For CO

!!!∆!! = ! !!! , !!! , !"# ! ,! !!!such%that!!!!!∆! = !!!∆!!
!!!"#$%&!

!!!
!

The basic idea is to decompose the state as 
contributions of CO sources to the CO state.

!!!∆! = !! , !! ,⋯ , !!"#$%%&'" !!∆!

!!
!!
⋮

!!"#$%&'"
!

In the case of a model grid point:

Note: CO tracers do not affect OH (They are treated as 
passive tracers)



Bayesian Synthesis Inversion For CO

Now, if we have a set of observations, 
and we assume the observations are 
related to the sources by: 

! = ! !" + !, !ℎ!"!!!!!!!!~!! !,!! !
and !!~!! !! ,!! !
Then, we can find an estimate of the 
sources by: ! !|! = !!! !|! ! ! !
the mean, covariance, & averaging 
Kernel of which are:

! = !! + !! !! ! !! !! !! ! + !! !! !− !! !! !
! = !" !!!!! !" + !!!! !!!
! = ! − !!!!! !



Bayesian Synthesis Inversion For CO

In the past, we solve for 
regional/sectoral scaling 
f a c t o r s ( a s s u m i n g t h e 
spatiotemporal distribution 
of the prior sources are 
well-known). e.g.,  

arellano et al, (2004)



Bayesian Synthesis Inversion For CO

Main Limitations:

1.Estimates sensitive to error  assumptions 
and obs choice

Heald et al (2004)



Bayesian Synthesis Inversion For CO

Main Limitations:

1.Estimates sensitive to error  assumptions 
and obs choice

Arellano et al (2004)



Bayesian Synthesis Inversion For CO

Main Limitations:

1.Estimates sensitive to error  assumptions 
and obs choice

Hooghiemestra et al (2012)

compare modeled CO mixing ratios to flask measurements
at altitudes >2 km above the sites shown in Figure 3 as red
triangles.
[29] The MOZAIC (Measurement of OZone, water

vapour, carbon monoxide and nitrogen oxides by Airbus In-
service airCraft) program produces in-situ measurements of
CO during commercial flights [Nedelec et al., 2003]. These
flights are mainly over the NH from Europe to the US, Asia
and the Middle East. The SH is poorly covered by these
flights. We compare model CO with in-situ measurements at
altitudes >2 km to validate our results above the polluted
boundary layer. A large fraction of these data is sampled at
aircraft cruise altitude (10–12 km). Hence, in the mid and
high latitudes of the NH, these flights cross the stratosphere
in which the model chemistry and also the vertical transport
are less accurate. These measurements are therefore omitted
from the comparison.
2.4.2. FTIR Total Column Observations
[30] Several Fourier-Transform Infrared Spectrometer

(FTIR) stations worldwide measure total columns from the
ground. The data used in this paper is publicly available
from the Web site of the Network for the Detection of
Atmospheric Composition Change (NDACC:http://www.
ndsc.ncep.noaa.gov/). We compare our modeled CO on the
coarse model resolution (6! " 4!) to column data taking into
account the averaging kernels if available (and also present
the comparison without using the averaging kernels; see
Table 3). Due to the small footprint of the FTIR measure-
ments, the model will likely overestimate the observations in
mountain regions as the model surface pressure will be
larger and hence, the model column will be deeper compared

to the FTIR column. For a fair comparison, the partial model
column below the FTIR surface pressure is ignored.

3. Results and Discussion

3.1. Emission Increments and the Fit
to the Observations
[31] We start this section with a comparison between

simulated and observed CO mixing ratios for those obser-
vations that have been assimilated in the 4D-Var system. For
NOAA surface network observations, Figure 7 shows the
prior (yellow line) and posterior simulation for the station
inversion (blue line) at 6 stations as well as the flask obser-
vations (black dots with computed 1s observation errors).
The red line shows the posterior simulation using MOPITT
derived emissions and will be discussed in section 3.3. For
the NH stations (Figure 7, top), the prior simulation under-
estimates the observations whereas for the SH (Figure 7,
bottom), the prior simulation compares well with the NOAA
surface observations. For the MOPITT inversion, the com-
parison with MOPITT total columns is shown in Figure 8.
Three-monthly composites of the difference between the
model simulation and the observations are shown for the
prior simulation (Figure 8, left) and the posterior simulation
(Figure 8, middle). Reddish colors indicate a model under-
estimate and bluish colors indicate a model overestimate
compared to the MOPITT observations. The right most
column shows the comparison for the posterior simulation
using emissions derived from the stations-only inversion and
will be discussed in section 3.3. As for the NOAA stations,
the prior simulation (Figure 8, left) underestimates the

Figure 7. Prior and posterior simulation for 2004 sampled at 6 NOAA stations that were assimilated in
the 4D-Var inversion stations-only. The simulation in red used optimized emissions from the MOPITT-
only inversion. Black dots represent the NOAA flask observations. Error bars denote the total observation
error (including the model representativeness error). The comparison with additional stations is presented
in the auxiliary material.

HOOGHIEMSTRA ET AL.: CO INVERSIONS USING MOPITT OR NOAA DATA D06309D06309

10 of 23



Bayesian Synthesis Inversion For CO

Main Limitations:

2.E s t i m a t e s s e n s i t i v e t o i n v e r s e 
methodology and configuration

Kopacz et al (2007)



Bayesian Synthesis Inversion For CO

Main Limitations:

3.Estimates sensitive to model treatment of 
transport (convection, boundary layer)

Arellano and Hess (2006)

differences in inverse results  differences in response functions 



Bayesian Synthesis Inversion For CO

Kopacz et al (2010)

Main Limitations:

3.A posteriori CO states still exhibit 
Large biases



Bayesian Synthesis Inversion For CO

Heald et al (2004)

Main Limitations:

3.A posteriori CO states still exhibit 
Large biases

Arellano and Hess (2006)



Joint State-Source Estimation

Anderson: Ensemble Tutorial 13 9/8/06

How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

y

****

h h
h

y

Theory: impact of
observation increments on
each state variable can be
handled sequentially!
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State-Augmentation:
Following e.g., Evensen (2009) for parameter 
and state estimation, we can augment our 
state vector with the 2D-3D sources of CO. 
We can use the same EAKF formulation in DART.
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mean Correlation between species in the forecast error 
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Fig. 3. Correlations between species in the background error covariance matrix, estimated from the LETKF ensemble at 950 hPa (left) and
500 hPa (right) averaged over 15–20 July 2007. The global mean of the covariance estimated for each grid point is plotted. The matrix
includes concentrations of all the predicted species, surface NOx emission (NOx-emi.), surface CO emissions (CO-emi.), and lightning NOx
sources (LNOx). Ox is the sum of O3 and O(1D), and NOx is the sum of NO, NO2, and NO3. The red (blue) colour represents positive
(negative) correlations.

Table 4. The performance of the data assimilation for different parameters: the horizontal localization length (loc) and the ensemble number
(ens). Ten-day mean (averaged over 20–30 January 2007) global mean RMS innovation of the OmF for each assimilated data are shown.
The control (CTL) simulation was conducted with loc= 450 km for NOx emissions and with 600 km for CO emissions, lightning NOx, and
the concentrations, and ens= 48. The simulations with different loc values were conducted with ens= 48. The smallest RMS innovation for
each comparison is shown in bold.

OMI NO2 MOPPIT CO TES O3 MLS O3 MLS HNO3
(1015 moleccm�2) (ppbv) (ppbv) (ppbv) (ppbv)

CTL 1.10 9.05 11.3 81.2 0.64
loc⇥ 0.5 1.13 9.44 11.3 89.1 0.75
loc⇥ 2.0 1.15 8.90 10.8 81.1 0.69
ens= 16 1.11 9.09 11.4 84.4 0.70
ens= 32 1.12 9.06 11.3 82.7 0.66
ens= 64 1.10 9.05 11.3 80.9 0.63

observations along with imperfect model predictions, as sug-
gested by Singh et al. (2011).

4.2 Results

The OSEs confirm that the assimilation of each species data
set has a strong influence on both assimilated and non-
assimilated species through the use of the inter-species error
correlation and through the chemical coupling provided by
the model forecast. The assimilation of OMI NO2 data pro-
vides some changes in O3 and CO concentrations, whereas
the assimilation of TES O3 data has some effects on NO2
fields, as will be shown in Sect. 5.1.2.. These changes are
tightly associated with the changes in OH because of the

chemical interactions in the CO-OH-NOx system, as de-
picted in Fig. 4. The assimilation of OMI NO2 data gen-
erally increases OH concentrations in the tropical tropo-
sphere by 5–15% and decreases it in the extratropics by 10–
20%. These changes correspond to the increased (decreased)
NO2 concentration in the tropics (in the extratropics) through
NOx-OH-O3 chemical reactions in the NOx-sensitive regime.
The assimilation of TES O3 data also significantly changes
OH concentrations. The obtained O3 increment results in a
10–20% increase in OH concentration in the extratropics. As
a result of the combined assimilation of all satellite data sets,
zonal mean OH concentration is increased by 5–15% in the
tropics and the Southern Hemisphere, and the north-to-south

www.atmos-chem-phys.net/12/9545/2012/ Atmos. Chem. Phys., 12, 9545–9579, 2012
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ensemble Kalman filter

X. Tang a, J. Zhu a, *, Z.F. Wang a, M. Wang b, A. Gbaguidi a, J. Li a, M. Shao b, G.Q. Tang a,
D.S. Ji a
a LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
b College of Environmental Sciences and Engineering, Peking University, Beijing, China

h i g h l i g h t s

! Inverse emission estimation method based on ensemble Kalman filter is established.
! Carbon monoxide (CO) emissions over Beijing and surrounding areas are estimated.
! The biases in the a priori bottom-up emission inventory are identified.
! The CO simulations are significantly improved using the inversion emission inventory.
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a b s t r a c t

Inversion of the carbon monoxide (CO) emissions over Beijing and surrounding areas in the summer of
2010 is carried on the Nested Air Quality Prediction Modeling System (NAQPMS) in coupling with an
ensemble Kalman filter. CO emission is estimated through integration of observations data obtained from
25 sites in Beijing and surrounding areas of which 13 sites selected as assimilation sites are used to
perform a joint adjustment of both CO concentrations and emissions with hourly surface CO observa-
tions, and 12 other sites selected to validate the inversion emission inventory. As a result, estimated CO
emissions (Tg year"1) for Beijing, Tianjin, Tangshan and Baoding are 4.11, 3.75, 3.17 and 4.08, respectively;
higher than the a priori estimates in the Regional Emission inventory in Asia Version 1.1 (REAS V1.1) by
50%, 80%, 120% and 150% respectively. Obviously, the regional CO emissions are underestimated in
REAS1.1, especially over Beijing and surrounding areas. Use of the inverse emission inventory reduces the
bias of CO simulation by 64% at assimilation sites and 48% at validation sites.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

High levels of carbon monoxide (CO) and ozone (O3) are
frequently observed in summer over Beijing (Chan and Yao, 2008;
Parrish et al., 2009). CO is an important precursor of ozone and
an important sink for hydroxyl radical. A great concern for
modeling the high CO and O3 of Beijing is that the CO emission
inventory is still largely uncertain (e.g., Ma and van Aardenne,
2004; Zhang et al., 2009). Reducing the uncertainty of the CO
emission inventory for accurate CO and ozone modeling is crucial
for air quality management in these areas. Furthermore, CO is a
commonly used tracer to estimate the anthropogenic emissions of
chlorofluorocarbons (e.g., Shao et al., 2011; Yao et al., 2012) and

non-methane hydrocarbons (e.g., Warneke et al., 2012). Thus,
reducing the uncertainty of the CO emission inventory can also
provide with constraints in the emissions of VOCs and other related
pollutants.

Observed ambient concentrations of CO provide useful infor-
mation regarding its emission sources and have been well used for
constraining the urban-scale CO emission inventory (e.g.,
Mendoza-Dominguez and Russell, 2001; Saide et al., 2009). How-
ever, the resulting effects on constraining the CO emissions over
Beijing and surrounding areas are seldom investigated. One
attempt was made by Xu et al. (2011) who employed the CO ob-
servations of a suburban site and backward trajectory analysis to
estimate the CO emissions over the North China Plain. The major
limitation of such an estimate is that the sink and the turbulent
mixing processes during transport are not well accounted in their
backward trajectory analysis. The analysis might also strongly
amplify the errors of the estimates from locations within

* Corresponding author. Tel.: þ86 10 82995005.
E-mail address: jzhu@mail.iap.ac.cn (J. Zhu).

Contents lists available at ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier .com/locate/atmosenv

1352-2310/$ e see front matter ! 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.atmosenv.2013.08.051

Atmospheric Environment 81 (2013) 676e686

Joint State-Source Estimation

managed and maintained by the Beijing Municipal Environmental
Monitoring Center (BJMEMC), and their hourly CO concentration
observations are provided with the data precision at a concentra-
tion of 0.1 ppm (http://www.bjmemc.com.cn/g356.aspx). The sur-
rounding stations (Tianjin, Tangshan, Baoding, Gu’an, and
Xinglong), established by the IAP/CAS (Xin et al., 2010), are mostly
located in the central urban areas and provide hourly CO observa-
tions as well. The 25 stations are split into two parts. Thirteen of
those stations in the central urban or suburban districts (shown in
Fig. 2) are used as assimilation sites to estimate the CO emission
rates. Their hourly CO observations contain up-to-date detailed
information regarding the emissions from traffic and other nearby
anthropogenic emission sources. The other 12 stations, including
both urban and rural sites, are withheld from the inversion esti-
mation and used to validate the inversion emission inventory.

2.2. Inverse emission estimation scheme

The inverse emission estimation scheme is established based on
the Chemical Data Assimilation System (ChemDAS) described by
Tang et al. (2011). The ChemDAS employs the EnKF algorithm
proposed by Evensen (1994). This scheme can assimilate the hourly
observations to sequentially adjust the a priori emission inventory
and produce a posterior emission inventory, i.e., the inverse emis-
sion inventory. In this scheme, the relationship between emissions
and concentrations can be directly quantified through the back-
ground error covariance based on ensemble forecast. A full
description of the inverse estimation scheme is given in Sections
2.2.1e2.2.3.

2.2.1. Inputs uncertainty analysis
Emissions, simulated concentrations, and observed concentra-

tions are the main inputs for the inverse estimation scheme. Un-
certainty information related to these variables is required before
the inverse estimation. Firstly, the simulation of CO in CTM is
described as follows:

bxk ¼ Mðbxk#1; bek#1; bgk#1Þ (1)

where bxk#1 and bek#1 are the CO concentrations and emissions at
time step k-1 respectively. bgk#1 represents the other model inputs;
the uncertainties of modeled variables and the observations by are
assumed in the Gaussian distributions:

bx ¼ xþ d; dwNð0;JÞ (2a)

be ¼ eþ ε; εwNð0;EÞ (2b)

bg ¼ g þ z; zwNð0;GÞ (2c)

by ¼ y þ g; gwNð0;RÞ (2d)

where x, e, g, and y represent the unknown true values of those
variables. d, ε, z, and g are the random errors of their estimates,
which follow normal distributions with means of 0; J, E, G and R
are the standard deviation of the probability distributions of the
uncertainties in these variables.

Through calculating the average difference between the simu-
lations and measurements of CO concentrations over Beijing and
surrounding areas, the standard deviation (J in Equation (2a)) of
the uncertainty in the simulated CO concentrations at each model
grid is set as 80% of the simulated value. The uncertainty in the a
priori estimates of CO emissions is assumed to be within 70%,
referring to the estimation for the INTEX-B emission inventory
(Zhang et al., 2009) that presents similar levels to REAS1.1 of CO
emission rates over Beijing and surrounding areas.

The uncertainty in the observations involves the measurement
error, representativeness error and the error related to data preci-
sion. Regarding the data precision of the observations from
BJMEMC, the maximum error induced by the data precision is
assumed to be 0.05 ppm. The representativeness errors are calcu-
lated following the method of Elbern et al. (2007) based on the
model grid resolution and the characteristic representativeness

Fig. 2. Monitoring stations. The sites marked as red dots are assimilated in the CO emission inversion experiment; the stations denoted by black triangles are used for validating the
inversion emission inventory; the meteorological stations are represented by blue stars. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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observations are provided with the data precision at a concentra-
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the statistical indices of CO simulation in Posteriori-Free-Run are
compared with those in Base-Free-Run. The CO simulation with IEI
shows a substantially better performance than that using REAS1.1.
The systematic overestimations of CO concentrations in Base-Free-
Run at assimilation sites and validation sites are substantially
reduced by 64% and 48% respectively after employing IEI. The result
suggests that using IEI can not only improve CO simulation at
assimilation sites but also effectively reduce the errors of CO
simulation at validation sites.

Fig. 8 presents a comparison of the CO observations, the CO
simulations in Base-Free-Run and Posteriori-Free-Run at eight
stations. At the two central urban sites of Beijing, the CO simula-
tions with IEI show similar performance as that using REAS1.1 and
are close to the observations. Noticeable slight discrepancies in the
simulated CO are probably related to the decrease in CO emissions
over the central urban areas of Beijing and increase over the sub-
urban areas after the inverse estimation. At the two suburban sites
of Beijing and the urban sites of Tianjin, Tangshan, Baoding and
Gu’an, the CO simulations with IEI are consistent with the obser-
vations during the simulation period except for July 20e21 and
present much better performance than those with REAS1.1. The
simulation errors during July 20e21 are most likely caused by the
errors of the meteorological simulation, as shown in Fig. 3. An

improvement of meteorological simulation might reduce these
errors. Overall, the CO simulation in the Posteriori-Free-Run can
reproduce the main features of the CO observations, providing a
validation for IEI.

3.4. Sensitivity tests

The performance of the inverse emission estimation depends on
several factors as discussed above. In order to provide insights into
the impact of these factors, sensitivity tests are performed and
summarized in Table 3. The first test SE01 is to investigate the
sensitivity of the inversion estimation to the length of the assimi-
lation window. The estimation of an assimilation window is the
temporal average of the hourly estimates within the assimilation
window, as being stated in Section 3.2. Fig. 9 shows the inversion
estimates of CO emissions with the length of assimilation window
ranging from 1 day to 12 days. When the length of the assimilation
window is less than 5 days, the inverse estimations are very sen-
sitive to the length of assimilation window and show wide fluctu-
ations. After the assimilation window extended to more than 5
days, the estimations tender to stabilize without the appearance of

Table 2
Correlation (R), root mean square error (RMSE) and mean bias (MB) of CO simula-
tions at the assimilation sites (AS) and validation sites (VS). The two simulations are
the Base-Free-Run using the REAS1.1 and the Posteriori-Free-Run using the IEI.

Experiments R RMSE (ppm) MB (ppm)

As VS As VS As VS

Base-Free-Run 0.78 0.59 0.59 0.53 !0.53 !0.48
Posteriori-Free-Run 0.83 0.66 0.29 0.37 !0.19 !0.25

Fig. 8. Comparison of the simulations and observations of the daily CO concentrations. Red triangles represent the observations; black squares denote the CO concentrations
simulated with REAS1.1 in the Base-Free-Run; blue squares mark the CO concentrations simulated with the inversion emission inventory (IEI) in the Posteriori-Free-Run. The shaded
areas in the contour plot represent the average CO concentrations from July 18e30, 2010 in the Posteriori-Free-Run.

Table 3
Sensitivity experiments to investigate the sensitivity of the inverse emission esti-
mates to the sensitivity factors.

Experiments Sensitivity factors Tests

SE01 Length of assimilation window From 1 day to 12 days
SE02 Perturbing model error Removed
SE03 Using nighttime observation Removed
SE04 Boundary conditions Doubled
SE05 Adjusting CO concentrations Removed
SE06 Localization scale 27 km; 63 km

X. Tang et al. / Atmospheric Environment 81 (2013) 676e686 683
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3. Results and discussions

3.1. Assessment of meteorological simulation and a priori CO
simulation

The performance of meteorological simulation is critical for in-
verse emission estimation and is firstly assessed before conducting
the inverse estimation, because the meteorological parameters
determines the transport process from the sources to observation
stations and the estimation of the flow-dependent background
error covariance. Fig. 3 gives a comparison of the meteorological
parameters (i.e., temperature, relative humidity, wind speed, and
wind direction) simulated by MM5 and those observed at one
surface stations (location displayed in Fig. 2). The observed mete-
orological conditions are relatively stable with low wind speed and
high humidity. The wind is most southerly during daytime and
nighttime. The simulations are generally consistent with the ob-
servations except for the overestimation of wind speed on July 20
and the underestimation of wind speed on July 30. Overall, the
simulation can reproduce the main features of the observed
meteorological conditions without systematic errors.

The performance of the CO simulation using the a priori emis-
sion inventory (i.e., REAS1.1) is firstly investigated through a free
run of the CTM (Base-Free-Run). Fig. 4 displays a comparison of the
CO simulations in the Base-Free-Run and the observations at eight
urban sites. The simulations are significantly lower than the ob-
servations except for the central urban sites (Dongsi and Aoti) in
Beijing, while the simulated temporal variations of CO are generally
consistent with observations. Considering the performance of the
meteorological simulation, the systematic underestimations of CO
indicate that the CO emissions over most of Beijing and sur-
rounding areas might be underestimated by REAS1.1. The findings
of Li et al. (2012) based on observational analysis support this
result. Therefore, applying an inverse estimation might reduce the
potential bias in the CO emission estimates over Beijing and sur-
roundings in REAS1.1.

3.2. Inverse estimation of CO emissions

The CO emissions are inversely estimated in the Base-Inversion
through hourly adjusting the a priori CO emission inventory. Fig. 5
displays the hourly inverse estimations of CO emissions of Beijing,

Tianjin, Tangshan and Baoding at every analysis step. The estimates
of CO emissions for each of these cities are higher than those in
REAS1.1 at most of the analysis steps, which provides consistent
results indicating the underestimation of CO emissions in REAS1.1.
However, attention should be paid to the rapid and wide fluctua-
tions of the hourly estimations. The differences between various
analysis steps reach 5.3, 6.3, 2.7, and 3.6 Tg year!1 for Beijing,
Tianjin, Tangshan and Baoding respectively. This result implies that
the inverse estimation using only 1 h observations might be highly
uncertain. The rapid fluctuations in the hourly estimations are
probably related to the influence from the random model errors
(e.g., errors in meteorological inputs) and the inherent variations of
the emissions.

The objective of this study is not to estimate the temporal
variation of emissions which is an extremely ill-posed inversion
problem with the available observations. The main purpose is to
identify and reduce the potential bias in the a priori CO emission
inventory. Therefore, after completing the sequential estimations
from 00:00 July 19 to 23:00 July 30, the hourly CO emission esti-
mates at all the analysis steps are temporally averaged within the
whole assimilation window to produce the posterior estimation,
i.e., the inverse emission inventory (IEI). The post-processing of the
sequential estimations advantages filtering the influences from
random model errors and temporal variation of emissions on the
inverse estimation. The final estimates of CO emissions in IEI are
given in Table 1. The emission rates of Beijing, Tianjin, Tangshan and
Baoding in IEI are significantly higher than those in REAS1.1, and
increased by 50%, 80%, 120% and 150% respectively.

In order to assess the results, the IEI is compared with three
available CO emission inventories produced recently. The tope
down estimates of CO emissions of Tangshan in 2009 reported by
Xu et al. (2011) are much higher than those in REAS1.1. In a local
bottom-up emission inventory obtained from surveys and statistics
of emission sources and factors (provided by Cheng et al. at Beijing
University of Technology), the CO emission rate of Tangshan in 2010
is 4.3 Tg year!1, also significantly higher than those in REAS1.1.
Another new estimate is from the updated version of REAS1.1, i.e.,
REAS2.1 (Kurokawa et al., 2013). In REAS2.1, the CO emission rates
of Tangshan and Baoding are 2.9 and 3.7 Tg year!1 respectively,
close to our estimates; the estimates for Beijing and Tianjin are
3.08 Tg year!1 and 2.62 Tg year!1 respectively; lower than our
estimates but higher than the estimates in REAS1.1. Furthermore,
regarding the CO emissions over China, almost all of the previous
top-down studies (e.g., Heald et al., 2004; Kopacz et al., 2010) found
that bottomeup emission inventories underestimated anthropo-
genic CO emissions. Therefore, improvement of CO emission esti-
mate can be claimed through our estimates, at least over Tangshan
and Baoding areas, although further investigation is necessary for
the evaluation of the current estimates over the whole inversion
region.

Fig. 6(a)e(c) present the spatial distributions of the CO emission
rates of the a priori emission inventory over Domain 3, the IEI, and
their differences, respectively. The CO emission rates over Beijing
and Tianjin in the a priori emission inventory are significantly

Fig. 5. Hourly inverse estimations of CO emissions of Beijing, Tianjin, Tangshan and
Baoding at every analysis step in the Base-Inversion.

Table 1
Estimates of CO emission rates (Tg year!1) for Beijing, Tianjin, Tangshan and Baoding
in the Regional Emission inventory in Asia Version 1.1 (REAS1.1) and the inversion
emission inventory obtained in Base-Inversion (IEI).

Cities REAS1.1 IEI

Beijing 2.79 ("80%) 4.11 ("46%)
Tianjin 2.11 ("80%) 3.75 ("45%)
Tangshan 1.43 ("80%) 3.17 ("53%)
Baoding 1.64 ("80%) 4.08 ("47%)
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higher than those over other areas. Compared with the a priori
estimate, significant increases in CO emission rates are found over
Tianjin, Tangshan and Baoding in IEI. The CO emission rates over
the suburban areas of Beijing increase considerably after the in-
verse estimation but decrease considerably over the central urban
areas.

In the central urban areas of Beijing, vehicular sources account
for the majority of the total CO emissions (Hao et al., 2001).

According to the estimate by Wu et al. (2011b), the total vehicular
emissions of CO in Beijing show a clear and steady decrease be-
tween 1999 and 2009 due to the active control measures such as
the implementation of more strict emission standards, despite an
annual growth of 13% for the total vehicle number. In fact, the road
system of the central urban areas of Beijing is saturated with traffic
so that further increase in vehicular movements is logistically not
possible. Therefore, over these areas, the decrease of CO emission
rates after the inverse estimation might be attributed to the
aforementioned control measures for vehicular emissions which
are not substantially integrated in REAS1.1 for 2006. Over the
suburban areas of Beijing, the rapid growth of the vehicular number
in Beijing probably drives an increase of CO emissions over the
suburban areas with the urbanization process. Moreover, com-
bustion of open biomass was not included in REAS1.1, which might
lead to an underestimation of the CO emissions. Overall, the result
of the current study indicates that the a priori estimate un-
derestimates the CO emission rates over the suburban areas of
Beijing and overestimates those over the central urban areas.

In the EnKF-based inverse estimation scheme, the uncertainty is
represented by the spread of the ensemble samples that make it
convenient for evaluation. As described in Section 2.2.1, the un-
certainties in the a priori emissions are assumed to be 80% for each
grid of the model. In order to evaluate the uncertainties of the a
posteriori emission inventory, the ensemble spreads of the emis-
sion samples at all the analysis steps are averaged over whole
assimilation window and taken as the uncertainties of the a pos-
teriori emission estimation. Fig. 7 shows the spatial distribution of
the uncertainties of the a posteriori CO emissions over Domain 3.
The inverse estimation results in significant reduction of the
emission uncertainty over Beijing, Tianjin, Tangshan, and Baoding
areas, in particular at the assimilation stations. Furthermore, the
uncertainties of model grids emissions over each city are averaged
to evaluate the uncertainties of the estimated CO emission. The
uncertainties of the estimated CO emissions for Beijing, Tianjin,
Tangshan, and Baoding are given in the brackets in Table 1. The
results show that the inverse estimation can reduce the un-
certainties of the a priori CO emission inventory to a large extent.

3.3. CO simulation with IEI

In order to investigate the impact of IEI on CO simulation, a free
run of model (Posteriori-Free-Run) is conducted with IEI. In Table 2,

Fig. 6. CO emission rates in the third domains. (a) Estimates of REAS1.1; (b) estimates
of the inversion emission inventory (IEI); and (c) departure of the estimates of the IEI
from those of REAS1.1.

Fig. 7. Mean analysis spread (or standard deviation) of the ensemble samples of the a
posteriori CO emissions during July 18e30, 2010 in the Base-Inversion.
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higher than those over other areas. Compared with the a priori
estimate, significant increases in CO emission rates are found over
Tianjin, Tangshan and Baoding in IEI. The CO emission rates over
the suburban areas of Beijing increase considerably after the in-
verse estimation but decrease considerably over the central urban
areas.

In the central urban areas of Beijing, vehicular sources account
for the majority of the total CO emissions (Hao et al., 2001).

According to the estimate by Wu et al. (2011b), the total vehicular
emissions of CO in Beijing show a clear and steady decrease be-
tween 1999 and 2009 due to the active control measures such as
the implementation of more strict emission standards, despite an
annual growth of 13% for the total vehicle number. In fact, the road
system of the central urban areas of Beijing is saturated with traffic
so that further increase in vehicular movements is logistically not
possible. Therefore, over these areas, the decrease of CO emission
rates after the inverse estimation might be attributed to the
aforementioned control measures for vehicular emissions which
are not substantially integrated in REAS1.1 for 2006. Over the
suburban areas of Beijing, the rapid growth of the vehicular number
in Beijing probably drives an increase of CO emissions over the
suburban areas with the urbanization process. Moreover, com-
bustion of open biomass was not included in REAS1.1, which might
lead to an underestimation of the CO emissions. Overall, the result
of the current study indicates that the a priori estimate un-
derestimates the CO emission rates over the suburban areas of
Beijing and overestimates those over the central urban areas.

In the EnKF-based inverse estimation scheme, the uncertainty is
represented by the spread of the ensemble samples that make it
convenient for evaluation. As described in Section 2.2.1, the un-
certainties in the a priori emissions are assumed to be 80% for each
grid of the model. In order to evaluate the uncertainties of the a
posteriori emission inventory, the ensemble spreads of the emis-
sion samples at all the analysis steps are averaged over whole
assimilation window and taken as the uncertainties of the a pos-
teriori emission estimation. Fig. 7 shows the spatial distribution of
the uncertainties of the a posteriori CO emissions over Domain 3.
The inverse estimation results in significant reduction of the
emission uncertainty over Beijing, Tianjin, Tangshan, and Baoding
areas, in particular at the assimilation stations. Furthermore, the
uncertainties of model grids emissions over each city are averaged
to evaluate the uncertainties of the estimated CO emission. The
uncertainties of the estimated CO emissions for Beijing, Tianjin,
Tangshan, and Baoding are given in the brackets in Table 1. The
results show that the inverse estimation can reduce the un-
certainties of the a priori CO emission inventory to a large extent.

3.3. CO simulation with IEI

In order to investigate the impact of IEI on CO simulation, a free
run of model (Posteriori-Free-Run) is conducted with IEI. In Table 2,

Fig. 6. CO emission rates in the third domains. (a) Estimates of REAS1.1; (b) estimates
of the inversion emission inventory (IEI); and (c) departure of the estimates of the IEI
from those of REAS1.1.

Fig. 7. Mean analysis spread (or standard deviation) of the ensemble samples of the a
posteriori CO emissions during July 18e30, 2010 in the Base-Inversion.
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boundary conditions does not significantly impact the uncertainty
of the a posteriori emission inventories. In SE06, reduction of the
localization scale results in an increase of the uncertainty of the a
posteriori emission inventory. Note that, although the EnKF pro-
vides a straightforward way to evaluate the uncertainties in the a
posteriori emissions, the evaluation process is still complex due to
uncertainties in the estimation of the errors in observation and
model, as well as the errors in the a priori emission inventory.

4. Conclusions

The CO emissions over Beijing and surrounding areas in the
summer of 2010 are estimated with an EnKF-based emission esti-
mation scheme. The established scheme for inverse emission esti-
mation enables the assimilation of high frequency surface CO
observations to consistently optimize a priori CO emission in-
ventory and identify the potential bias in emission inventory. A new
high-resolution estimation of the CO emissions over Beijing and
surrounding areas was thus obtained. The inverse estimate sup-
ports the findings of some previous studies (e.g., Li et al., 2012) with
regard to the underestimation of the CO emissions over Beijing and
surrounding areas in REAS1.1 and other inventories with similar CO
emission levels, especially over Tangshan and Baoding. Further-
more, our estimate provides partial validation for some recent
bottom-up estimates (e.g., REAS2.1) of CO emissions. On the other
hand, the ability of the EnKF-based inverse estimation schememay
not be limited to the constraints of the CO emission inventory.
Further application of this scheme to the more reactive species of
NOx and VOCs would be useful to evaluate the a priori emission
estimates of these species.

Several issues have been highlighted in this study and should be
addressed in further analysis. Firstly, regarding the ill-posed in-
verse problem, the inverse estimation with the relatively sparse
observations in the current study is sensitive to several factors such
as localization scale, boundary conditions, and length of assimila-
tion window. Further investigation or application of the inverse
estimation scheme should pay particular attention to the optimi-
zation of these factors. For example, assimilatingmore observations
over the region with few assimilation stations should be helpful to
reduce the sensitivity of the inverse estimation to localization scale
and improve the inverse emission inventory obtained in the current
study. Secondly, the inverse estimation approach with sequential
assimilation enables combining the information of model and
observation data in a consistent and synchronous way. However,
the rapid fluctuation of the hourly estimates suggests that a
smoother for the sequential estimations is necessary to filter the
influence from the random model errors and produce stable esti-
mation. Last but not the least, the error in the meteorological
simulations constitutes a major concern for the CO simulation over
some periods. Reducing the bias or accurately simulating the
meteorological uncertainty might improve the inversion
estimation.
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Non-Gaussian Effects

◃ suppose p(x) and p(yo|x) are exponential pdfs

◃ analysis variance depends on yo: var(x|yo) = 0.152 for yo = 1.3
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Source: Chris Snyder/NCAR  (in Blayo et al., 2015) - Oxford Univ. Press 



Non-Gaussian EffectsNon-Gaussian Effects (cont.)

◃ suppose p(x) and p(yo|x) are exponential pdfs

◃ analysis variance depends on yo: var(x|yo) = 0.232 for yo = 1.7
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Non-Gaussian EffectsNon-Gaussian Effects (cont.)

◃ p(x1, x2) for 2D state (x1, x2); thin lines indicate marginal pdfs
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Non-Gaussian EffectsNon-Gaussian Effects (cont.)

◃ observation yo = x1 + ϵ = 1.1

◃ p(yo|x1, x2) does not depend on x2
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Non-Gaussian EffectsNon-Gaussian Effects (cont.)

◃ p(x1, x2|yo)

◃ marginal variances increase, marginal for x2 becomes bimodal
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Toward a chemical reanalysis in a coupled chemistry-climate
model: An evaluation of MOPITT CO assimilation
and its impact on tropospheric composition
B. Gaubert1, A. F. Arellano Jr.2, J. Barré1, H. M. Worden1, L. K. Emmons1, S. Tilmes1, R. R. Buchholz1,
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Abstract We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint
assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere
(MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the
impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model
like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent
observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We
then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate
the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371±12%Tg for MOPITT
Reanalysis and 291±9%Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct
emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation,
transport, and deposition processes are not accurately and consistently represented in the model. Increases in
CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT
Reanalysis: 9.3 years). Yet at the same time, this increase led to 5–10% enhancement of Northern Hemisphere
O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the
attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and
inversion studies of longer-lived species.

1. Introduction

Oxidation in the troposphere is mainly controlled by the hydroxyl radical (OH), which initiates a complex chain
of reactions that significantly affects the abundance of radiatively and chemically important species such as
ozone (O3), methane (CH4), and secondary organic aerosols [Isaksen et al., 2009]. For example, the OH radical
reacts with atmospheric CH4, nonmethane volatile organic compounds (NMVOCs), and carbon monoxide
(CO), leading to the ultimate oxidation of reduced carbon in the troposphere to carbon dioxide (CO2). The reac-
tion with CO is considered the primary chemical loss mechanism for OH, followed by its reaction with CH4 [Levy,
1971]. Changes in CO and CH4 abundance therefore introduce important perturbations in the chemical system
of the troposphere, resulting in changes in radiative forcing from these species [Stocker et al., 2013]. Larger
emissions of CO, in particular, lead to increases in the burden of several tropospheric species due to the reduc-
tion in OH [Prather, 1996]. The subsequent increase in CH4 burden (and its lifetime) leads to a positive feedback
on CO abundance through chemical production of CO from CH4 [Guthrie, 1989]. Furthermore, at appropriate
levels of nitrogen oxides (NOx=NO2+NO), the CO+OH reaction is also efficiently involved in the photochemi-
cal production of tropospheric O3 [Crutzen, 1973; Logan et al., 1981]. The efficiency of O3 production and the
chemical oxidation of CH4 and CO are controlled by the recycling of the HOx family of radicals, consisting of
OH, hydroperoxy (HO2), organic peroxy (RO2), and oxy (RO) radicals. Constraints on the interdependence
between CO, CH4 (and NMVOCs), and OH are therefore critical in understanding the overall chemical response
to perturbations in tropospheric composition and associated climate forcings.
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where si is now in units of [molecules cm-3 s-1]. The Eulerian advective form is 
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and the Lagrangian form is 
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The transport and local terms involve a number of different processes operating in the 
model environment. The continuity equation is thus usefully represented for model 
purposes as a sum of terms describing the different processes for which the model 
provides independent formulations. For example, the Eulerian form may be decomposed 
as 

 

 
ρ ρ ρ ρ ρ ρ ρ ρi i i i i i i i

adv mix conv scav chem em dept t t t t t t t
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ª º ª º ª º ª º ª º ª º ª º= + + + + + +« » « » « » « » « » « » « »∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

 (4.10) 

 
where the terms on the right hand side represent successively the contributions of 
advection, turbulent mixing, convection, wet scavenging by precipitation, chemistry, 
emissions, and dry deposition. We describe the formulations for each of these terms in 
the following sub-sections. The Lagrangian form using the total derivative may be 
similarly decomposed but without the transport terms; a separate algorithm is needed to 
describe the Lagrangian transport of air parcels and this is also described below. 
 

4.2.2. Advection 
 
Advection describes transport by the wind resolved on the model scale. The wind 
velocity vector v is then a spatial and temporal average over the model grid and time step. 
The corresponding mass flux is ( , , ) ( , , )x y z T T

i i i i i iF F F u v wρ ρ= = =F v  Consider an 
elemental volume dV = dxdydz centered at (x, y, z), and a wind velocity component u in 
the x-direction. The corresponding mass flux for species i is ρx

i iF u=  [kg m-2 s-1]. The 
flow rate into the volume (kg s-1) is ( / 2)x

iF x dx dydz−  and the flow rate out of the 
volume is ( / 2)x

iF x dx dydz+  (Figure 4.1). The change per unit time in the concentration 
ρi within the volume is then given by  

 

 
( ) ( ) ( )2 2 ρρ x x x

i i ii i
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F x dx F x dx dydz uF
t dxdydz x x

ª º− − + ∂∂ ∂ª º ¬ ¼= = −« »∂ ∂ ∂¬ ¼
 =  −

 
  (4.11) 
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Eq. 4.10 of Brasseur and Jacob, 2016

Better characterization of model errors (covariances) is key!
Need to be careful about ‘mis-attribution’. Posterior 
diagnostics have to be investigated incl. comparison with 
independent datasets.
Non-linearity and Non-Gaussianity continue to be an issue.
Ensemble-based approaches show promise (localization is 
critical).
Need to reconcile with bottom-up estimates.

Final Thoughts
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