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Top-down emission estimation requires the solution of a 
delicate, and potentially noise sensitive, ‘inverse problem’

[Courtesy of Ian McDade] 2



p(y |

p y x( ) p(x) = p(x,y) = p x y( ) p(y)

p x y( ) = p y x( ) p(x)
p(y)

But there is hope!

Bayes’ theorem:
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R = E[εε T ] B = E[(x − xb )(x − xb )T ]

p x y( ) = p y x( ) p(x)
p(y)

For the MAP estimator, we want to find the state that maximized the 
conditional pdf 

−2 ln p y x( ) = (y −Hx)TR−1(y −Hx)+ c1

−2 ln p x( ) = (x − xb )TB−1(x − xb )+ c2

−2 ln p x y( ) = (y −Hx)TR−1(y −Hx)+ (x − xb )TB−1(x − xb )+ c3

Assuming Gaussian error statistics,

The Bayesian Approach

y = Hx + εConsider the linear model:
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where and

How do we get x?



−2 ln p x y( ) = (y −Hx)TR−1(y −Hx)+ (x − xb )TB−1(x − xb )+ c3

For the MAP estimate we require
∂
∂x
ln p(x y) = 0

−HTR−1(y −Hx)+B−1(x − xb ) = 0

which yields the MAP solution:

The Bayesian Approach

xa = xb + (HTR−1H +B−1)−1HTR−1(y −Hxb )

Pa = (HTR−1H +B−1)−1
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Thus



B

HTR-1H

xb xa

Pa

The small ellipsoid is the contour of the posterior pdf. It represents the region 
consistent with the prior information and the measurement [Rogers, 2000].

Consider a 3-D state space, 
with a 2-D measurement space.

[Rodgers, 2000]

contour of the prior pdf

contour of the pdf of the state 
given only the measurements

Averaging kernel: A = I− PaB−1 7

The Bayesian Approach



Resolution of the Inversion

Averaging kernel matrix: 

xa = xb + (HTR−1H +B−1)−1HTR−1(y −Hxb ) = xb +K(y −Hxb )

But y = Hx + ε

xa = xb +KH(x − xb )+Kε
= xb +A(x − xb )+Kε

A = KH
= (HTR−1H +B−1)−1HTR−1H
= (I− PaB−1)

Degrees of freedom for signal (DOFs) = trace(A)
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Resolution of the Inversion

Averaging kernel: A = I− PaB−1

Palmer et al. 2003, Inverting for emissions of carbon 
monoxide from Asia using aircraft observations over 
the western Pacific, JGR, 2003

9



Filtering Properties

xa = xb +BHT (HBHT +R)−1(y −Hxb )

Let d = y −Hxb

If we assume that H = I, we can write the analysis increment as

z = xa − xb = B(B+R)−1d = (I+RB−1)−1d

Additional simplifications R = (σ r )2 I B = (σ b )2Cand

Be = (σ b )2λe
where C is a correlation matrix with eigenvectors and eigenvalues e and λ

So we have Re = (σ r )2 Ie = (σ r )2eand

(I+RB−1)−1e = 1
1+ (σ r )2

(σ b )2 λ

⎛

⎝
⎜

⎞

⎠
⎟ e =

1
1+ α

λ

⎛
⎝⎜

⎞
⎠⎟
eThus

where α = (σ
r )2

(σ b )2 10



z = xa − xb = B(B+R)−1d = (I+RB−1)−1dIncrement:

d = ciei
i=1

N

∑
So the increment becomes

Expand the innovation in terms of the eigenvectors of C

z = (I+RB−1)−1d = ci
1

1+ α
λi

⎛

⎝⎜
⎞

⎠⎟
ei

i=1

N

∑

i Modes with the largest λi  are damped the least.
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Filtering Properties

i The ratio of the observation error to the prior error (α ) also determines the damping.



How well do we constrain the state given the a priori and 
measurement uncertainties?

y = Hx + ε

y − yb = H(x − xb )+ ε

Our linear forward model is:

R !ε = E[ !ε !ε
T ]= E[R−1/2εε TR−1/2 ]= I

B !x = E[B
−1/2 (x − xb )(x − xb )TB−1/2 ]= B−1/2E[(x − xb )(x − xb )T ]B−1/2 = I

!x = B−1/2 (x − xb ) !y = R−1/2 (y − yb )Let

R !y = E[ !y!y
T ]= E[( !H!x + !ε )( !H!x + !ε )T ]

= !HE[ !x!xT ] !HT + E[ !ε !ε T ]
= !H !HT + I

!y = R−1/2HB1/2 !x +R−1/2ε
= !H!x + !ε !H = R−1/2HB1/2 !ε = R−1/2εwhere

R1/2 !y = HB1/2 !x + εOur model  
becomes:

12See Chapter 2 of Rodgers



R !y = !H !H
T + I

!H !HT Is the contribution from the variability of the state

The transformed observation covariance

I contribution from the measurement noise

What are the modes of variability of the state that are above the noise?

!y = !H!x + !ε = UΛVT !x + !ε

 U
T !y = ΛVT !x + UT !ε ′y = Λ ′x + ′ε    where Λ are the singular values of !H⇒

B ′x = I

R ′ε = I
 ′y = UT !y

 ′x = VT !x

 ′ε = UT !ε R ′y = Λ2 + I Modes with singular values > 1  
are above the noise⇒

How well do we constrain the state given the a priori and 
measurement uncertainties?
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Observations averaged 26 Feb - 9 Apr 2001

Aircraft observations

CO Inversion Example
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Heald, C. L., et al. (2004), Comparative inverse 
analysis of satellite (MOPITT) and aircraft 
(TRACE-P) observations to estimate Asian sources 
of carbon monoxide, JGR, 109.



• With MOPITT data, 10/11 modes are 
clearly above the noise !

• With the aircraft data, only 4/11 modes 
are above the noise

• Emissions from India project strongly 
onto the vector with singular value 58.4 
with MOPITT data, with aircraft data the 
corresponding singular value is <1 

• Southeast Asia and the Philippines 
project onto the vector with 26.1 with 
MOPITT data, with aircraft data the 
corresponding singular value is 2.1

[Heald et al. 2004] 15

CO Inversion Example



The inversion analysis should be conducted at a spatial and temporal 
resolution that is consistent with the variability of the state, subject to 
the information in the measurements

➡Conduct the inversion at the highest resolution possible; use the 
singular vectors of the transformed Jacobian to determine the scales 
on which you can reliably constrain the state 

What is the appropriate resolution at which to conduct 
the inversion?
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}multimodel 
spread  
(26 models)

Impact of Model Biases: Sensitivity to Transport and Chemistry

mean 
MOPITT at 
500 hPa

Shindel et al. (JGR, 2006)
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Inconsistencies in Top-down CO Source Estimates

Hooghiemstra et al. (JGR, 2012)

• The global mean source is well constrained 
• Regional source estimates differ due to different: 

- inversion approaches 
- datasets 
- atmospheric models
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Tracer V5	OH V8	OH

US	48	States 25 49

Alaska	and	Canada 41 55

Mexico 3 4

SE	Asia/India 35 39

Eastern	Asia 66 92

Europe 47 68

South	America 52 54

Southern	Africa 60 63

Northern	Africa 31 40

Impact of OH on CO 
Source Estimates

GEOS-Chem OH

Tropospheric column 
(1012 cm-2) in July 2004

Mean NH midlatitude 
(20N-40N) OH (106 cm-3)

CO estimates (Tg CO) based on inversion of 
MOPITT V5J data in the GEOS-Chem 4D-Var 
system for June-August 2004.

Jiang et al. (ACP, 2015)
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GEOS-Chem 4D-Var Inversion of MOPITT, OMI, and TES Data (Nov 2009)

State vector 
Emiss: CO

State vector 
Emiss: CO, NOx

State vector 
Emiss: CO, NOx 
I.C.: O3

State vector 
Emiss: CO, NOx
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[Martin Keller, U. Toronto]



State vector 
Emiss: CO 
I.C.: O3

State vector 
Emiss: CO, NOx 
I.C.: O3

State vector 
Emiss: CO, NOx
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GEOS-Chem 4D-Var Inversion of MOPITT, OMI, and TES Data (Nov 2009)

[Martin Keller, U. Toronto]



State vector 
Emiss: CO, NOx

State vector 
Emiss: CO, NOx 
I.C.: O3

State vector 
Emiss: CO, NOx

Excessive correction in NOx emissions to help optimize O3 initial conditions 

State vector 
Emiss: CO, NOx 
I.C.: O3
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GEOS-Chem 4D-Var Inversion of MOPITT, OMI, and TES Data (Nov 2009)

[Martin Keller, U. Toronto]



Strong Constraint 4D-Var

J(x0 ) = 1
2 [yi − Hi (Mi (x0 ))]

TRi
−1[yi − Hi (Mi (x0 ))]

i=0

N

∑
+ 1
2 (x0 − x

b )TB−1(x0 − x
b )

In strong Constraint 4D-Var the model is assumed to be perfect:

xi+1 = Mi (xi )

Here we optimize only the initial state.

[ECMWF, 2003]
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Accounting for Model Errors in 4D-Var

J(x) = 1
2 [yi − Hi (xi )]

TRi
−1[yi − Hi (xi )]

i=0

n

∑

+ 1
2 [xi −Mi (xi−1)]

TQi
−1

i=1

n

∑ [xi −Mi (xi−1)]

+ 1
2 (x0 − x

b )TB−1(x0 − x
b )

xi = Mi (xi−1)+ηiAccount for the imperfect model:

The control variable is the full 4-D state vector.

Weak Constraint 4D-Var
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Weak Constraint 4D-Var: Estimating Model Bias

J(x0,β ) = 1
2 [yi − Hi (Mi (x0 )+ β )]

TRi
−1[yi − Hi (Mi (x0 )+ β )]

i=0

n

∑
+ 1
2 β

TQ−1β + 1
2 (x0 − x

b )TB−1(x0 − x
b )

xi = Mi (x0 )+ β

The control variable is the initial state and the model bias.

[Trémolet, 2006]
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Weak Constraint 4D-Var: Estimating Model Errors

J(x0,η) = 1
2 [yi − Hi (xi )]

TRi
−1[yi − Hi (xi )]

i=0

n

∑

+ 1
2 ηi

TQi
−1ηi

i=1

n

∑ + 1
2 (x0 − x

b )TB−1(x0 − x
b )

xi = Mi (xi )+ηi

The control variable is the initial state and the model error forcing.

[Trémolet, 2006]
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Weak Constraint 4D-Var Inversion of CO Emissions

• Assimilated MOPITT V5J data for March 2006 in the GEOS-Chem weak 
constraint 4D-Var system	

• The constraint vector consists of the initial CO distribution, the model-error 
forcing, and the CO sources.	

• The model forcing terms are estimated only in the tropics and subtropics, 
30°S-30°N	

• The forcing is kept constant over a time window of 5 days and is applied only 
in the free troposphere	

• We assume      	
• Assume that B is diagonal, whereas R accounts for vertical correlations in the 

MOPITT retrievals

Initial Implementation in GEOS-Chem

28

Q =σQI



Weak Constraint 4D-Var Inversion of CO Emissions

[Martin Keller, U. Toronto] 29



Weak Constraint 4D-Var Inversion of CO Emissions

Strong constraint inversion has a large residual bias in the lower troposphere, 
which is reduced somewhat in the weak constraint inversions.

[Martin Keller, U. Toronto]
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• The forcing terms are weaker with a 
stronger penalty 

• Negative forcing in the southern tropics 
and positive forcing in the northern 
tropics 

• Negative forcing in the tropics is along 
the ITCZ

[Martin Keller, U. Toronto]

Estimated Mean Model-Error 
Forcing for Nov 2009
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Estimating Model Errors With Weak Constraint 4D-Var

Benefits 
• Can be used to mitigate impact of model errors on estimated emissions 
• Can be used to study structure and physical origin of model errors from 

the estimated forcing terms 
!
Challenges 
• Results are sensitive to the setup of the weak constraint system 
• The spatial and temporal sampling of the observations limit the ability of 

the inversion system to estimate the forcing terms 
• The ability of the inversion system to accurately capture model 

transport errors depends on the vertical resolution of the data 
• It is difficult to disentangle model biases, emission errors, and 

observation biases
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