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1. Covariance modelling (motivation)

Improvement in error covariances

» spectral error covariances

(2) Amundsen—Scott (90.05.24.8W)

« tuning of the error variances

03 Partial Column [DU]

(a) run DIAG [DU] (b) run CORREL [DU]

=

03 Partial Column [DU]

Ang Sep Oct Nov

g
:
Fig. 6. Total ozone in the Southern Hemisphere on 1 October 2003 obtamed by the runs D. (;é
Total Ozone Measurement Satellite (TOMS) (¢), i1 Dobson unit (D). £
5] : E
Errera and Ménard (2012) ACP hue S o ov

Fig. 5. Time series of the ozone partial column (10-100hPa) be-
tween August and October 2003 obtained above three NDACC sta-
tions in Antarctica by the ozone sondes (black circles), and the runs
DIAG (red line) and CORREL (blue line), in Dobson unit (DU).



Ways to construct positive-definite covariance matrices

Spectral representation

Fourier transform

Covariance function \

AV

infinite domain \

1- Discretizel In wavenumber

1- Subspace (manifold) and
2 — Truncate| jn wavenumbers

2 - Spatial discretization

/ Fourier series
representation

Covariance matrix in
a periodic domain

Fourier series
representation

of a periodic
covariance function




1.1 Covariance functions (Gaspari and Cohn 1999, QJRMS)

Definition 1: A function P(r,r’) is a covariance function of a random field X if
P(r,r') = (X ()= (X ONIX ) =(X (r))])

Definition 2: A covariance function P(r,r’) is a function that defines positive
semi-definite matrices when evaluated on any grid.
That is, letting r; and r; be any two grid points, the matrix P
whose elements are P;; = P(r;,r;) Is defines a covariance matrix,
when P is a covariance function

The equivalence between definition 1 and 2 is a result of the reproducing kernel
property of covariance functions (Rasmussen and Williams, 2006: Gaussian Processes

of Machine Learning.)

Remark Suppose a covariance function is defined in a 3D space, I € R®
Restricting the value of r to remain on an manifold (e.g. the surface of a unit sphere)
will also define a covariance function, and a covariance matrix (e.g. a covariance
matrix on the surface of a sphere)



Correlation function A correlation function C(r,r’) is a covariance function
P(r,r’) normalized by the standard deviation at the points r and r’

N P(r,r')
clrr) = JP(r,r) /P(r',r")

Homogeneous and isotropic correlation function If a correlation function
Is invariant under all translation and all orthogonal transformation, then the
correlation function become only a function of the distance between the two

pOIntS, C(r,rl) _ CO(Hr_rr )

Smoothness properties

e The continuity at the origin determines the continuity allowed on the rest of the
domain. For example, if the first derivative is discontinuous at the origin, then
first derivative discontinuity is allowed elsewhere (see example with triangle)




Examples of correlation functions (infinite domain)

1. Spatially uncorrelated model (black) 3. Second-order auto-regressive model

, lifr=r (SOAR) ( )
Collr=rh - {O ifr=r Co(|r—r'|) :(1+—Hr ! jexp[——“r ! ]
pSOAR pSOAR
2. First-order auto-regressive model 4. Gaussian model (red)

(FOAR) (blue) Hr _ P
_r C,(Ir—r'|) =exp| —

cute v = o -] : [ 2 }
FOAR

where L is the correlation length scale




1.2 Covariance matrices
Positive definite matrix (Horn and Johnson ,1985: Matrix Analysis, Chap 7)

A real n x n symmetric matrix A is positive definite if
c'Ac>0

for any nonzero vector c. A is said to be positive semi-definite if
¢c'Ac>0

Properties

 The sum of any positive definite matrices of the same size is also
positive definite

 Each eigenvalue of a positive definite matrix is a positive real number

 The trace and determinant are positive real numbers.

Covariance matrix
The covariance matrix P of a random vector X = [X,, X,, ..., X_]" is the matrix

P = [Pyl inwhich P, = E|(X, - X,)(X, - X )| where X, =E[X,]
and E is the mathematical expectation.




Property: A covariance matrix is positive semi-definite

E[(cl(Xl— X))+ +C (X — Yn))2]= E{Zn:ci(xi ~X)e,; (X, =X )

i) j=1

= Y eE[(X, - X)X, X )]e, =c'Pc>0

i) j=1

Remarks
1 - It is often necessary in data assimilation to invert the covariance matrices,
and thus we need to have positive definite covariances

2 — The positive definite property is global property of a matrix, and it is not
trivial to obtain

Correlation matrix

Create a diagonal matrix X of error standard deviation 3 = _ /diag (P)

then a correlation matrix C is related to P as follows P =3XC3X
C=X'Px™



b) Triangle C, j) { _‘Id—” for |i—j|<n
/\ 0 otherwise
for n=4 eigenvalues
1.000 0.750 0.500 0.250 0.000 | 3.0646
0.750 1.000 0.750 0.500 0.250 1.3090
0.500 0.750 1.000 0.750 0.500 0.2989
0.250 0.500 0.750 1.000 0.750 0.1910
10.000 0.250 0.500 0.750 1.000 0.1365
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Examples:

a) Truncated parabola

ch. i) {1 (Iazj) for |i— j| <n

/\ 0 otherwise

for n=4

eigenvalues
(1.000 0.937 0.750 0.437 0.000 3.8216
0.937 1.000 0.937 0.750 0.437 1.2500
0.750 0.937 1.000 0.937 0.750 0.0000
0.437 0.750 0.937 1.000 0.937 0.0000
10.000 0.437 0.750 0.937 1.000 —0.0716

11



Correlation function on a periodic domain (sub-domain / manifold approach)

Consider a Gaussian model on a 2D plane

where r e R?

Any subdomain or manifold of R? can also be a domain
to define a covariance function.

Consider as a manifold of R2, a circle of radius a

Ir—r’ * =2a%(1-cosh)

Now define a coordinate x along the

circle, p

a 0.1
X'—x=—for —a <x,xX'<a ,

27T X o
then we get

1-cos[2x (x—x")/a
C(x,x'):exp(—( [ 5 > ) ])] v
(ps /@) mEmEmEmE T T 12



Ways to construct positive-definite covariance matrices

physical space representation

Covariance function
infinite domain

Spgctral representation

Fourier transform

1- Subspace (manifold) and

2 - Spatial discretization

Covariance matrix in
a periodic domain

\

Fourier series
representation
of a periodic

covariance function

1- Discretizel In wavenumber
2 — Truncate| |n wavenumbers

Fourier series
representation

13



2% A
1.3 Spectral representation C(x)= \/; | C(m) cos(mx) dm
infinite domain ) .
C(m)= \P j C(m) cos(mx) dx

Gaussian model

2

C(x) = exp(— 2Xp2 j é(m) =C, exp[— mzzpé]

G

First order autoregressive model (FOAR)

C,
2 2
1+ M Proar

C(x) = exp(—ﬂ) é(m) =

FOAR

Second order autoregressive model (SOAR)

C(x) = (1+ ﬂ) exp(— ﬂ} é(m) = = 2
Psoar Psoar (1+ m’ pSZOAR)

To obtain a spectra for finite domain we set

Discretize in wavenumber

¥, = é(% - mj {T——— space for a Fourier series

L .
representation 14




1.4 Spectral representation over a periodic domain

Spectral representation of homogeneous isotropic correlations
On a unit circle
* C(r—r’ Za cos(mé)

where 0 is the angle between the two posmon vectors, and where
and all the Fourier coefficients a,, are nonnegative

e On a unit sphere C(r—r)= Y b,P,(cos6)
=0

where all the Legendre coefficients b_m are nonnegative.

Consider the complex notation of Fourier series
@(Xj)zzck p2rikx /L
The spatial covariance between x, andkx i-n = X; —hAX
C(Xj’Xj—h) = E[¢(X-)¢?(Xj 0]
_Z E[Cka ]ezm[kx —K'(x; -hAx)] Z E[Cka ]eZM[(k k')x; +khAx)]

For the covariance to depend only on X, —X;_, = “hAx we needE[c,C, ] = & (Ellc, \ ]
I.e. the Fourier modes are uncorrelated 15




Real functions - unitary Fourier series
Fourier series representation over a periodic domain L, using 2N+1 grid points

L j i
X, = =-—N,....0,...,N
2N +1 (] )

Discrete Fourier series, leading to a unitary matrix, i.e. F* =F'

#(x;) = ‘/ZN 1{ +Zak cos(zzkx j+i I(sm(%kx )}

and, in matrix form

aO
¢(X N) C—N,O C—N,l S—N,l C—N,N S—N.N a
.. b,
#(%) [=| Coo Cos Sox Con Son
¢(XN) CN,O CN,l SN,l CN,N SN,N ay
by
where C = ;C., = L1:S, = ;
oJaN+1 T T V2N +1COS( L J MOV 2N +1S'n( L j
 FisaFourier matrix _Feé
e Fitis written here as a unitary matrix,F' =F™ ¢=r0 16




How to construct an homogeneous isotropic correlation function in spectral space
Assume uncorrelated modes, i.e.

(aa;)

ba )r=0 fori=j
(biay)

(bb;)

then the covariance matrix of the spectral coefficient, C= <(f) (f)T>
becomes block-diagonal

C, 0 0 0
a_| 0 C, 0 0
0 0 0
0 0 0 C,

where

17



Transforming in physical space

Clon,) =2 <aoao>+ZN:<aE> COS(Zﬂk(xl+x2)j+cos(27zk(xl—xz)ﬂ
V2N +1 2 ~ 2 L L

0)

A homogeneous covariance only depends on distance C(x,, xz):C(jx1 — X,
To obtain such a model we assume

(a2)=(07)=r &
(a,b,) =0 o




1.5 Length-scales / smoothness / realizations

Correlation length vs correlation length-scale parameter

Correlation length based on the
curvature of the correlation function
at the origin x = 0 (Daley, 1991)

Correlation functions

for the same (unit) correlation length L,

1 1
" _

C (X)‘x:o =2 0.8}
c e 1/2 |
for a Gaussian correlation model 0.4}
x2 0.2}
Co () =exp| —— 05

2 G

we have Pg = L,

o) 0.8}
Cs(x=L,) =e"*~0.606 eV’
0.4}

We define the correlation length 0.2}

1 2 3 4 5
distance

1for the same (unit) correlation length-scale parameter p

: = (Gaussian
I — FOAR

.............. R R PP

— GaspariCohn

of an arbitrary correlation model 0
as the distance for which the
correlation reaches a value of 0.606

distance

L. =0.5005 popr L. =1.3494 p0r L. =0.5756p,c L, =pg

C

19



Different correlation models means different smoothness of the underlying
stochastic realization

Correlation L. =800 km

1.0 .
0.8}
0.6 |
0.4}
0.2}
0.9 L 1 Al
“7918 -3959 0 3959 7918
distance [km]
0.25 Normalized theoretical power spectrum
0.20 — foar
0.15F — gaussian |
0.10 | — soar
0.05
0'000 10 20 30 40 50
wavenumber k
20 Random realization
1.5} .
1.0}
0.5}
0.0
-0.5
-1.0}
-1.5}
—2.0F
_2.;| 1 1 1
27918 -3959 0 3959 7918



Sample correlation from an ensemble of stochastic realization

gaussian

The spectral decomposition of a correlation
matrix C (in 1D periodic domain) is given by

C=FCF
where
C =diag(c?(0), c2(1), c*(1), c2(2), ¢3(2), ...)
Is a diagonal matrix with repeated eigenvalues.

Random spatially correlated perturbations §c

can be obtained by
2N +1

sc=Y d.c(k)e, = FC'd

where e, are the columns (or eigenvectors) of F
and d, ~ N (O, 1) are uncorrelated normally
distributed random variables, d =[d,, d, ,..., d, 4]

So
E[sc(5c) ] = FCY2E[dd"]CY?FT =FCF" =C

b

Python script: sampleCorrelations.py



1.6 Spectral representation on a sphere

N

Vp) =Y D I () = 3. Y,(5)

n=0 m=-n

where ¢ =(n,m) and S =(1,9)

. Y, (S)= P (u)exp(imA)
{=sing

Orthogonality

1 Zf anm (2, N (2, ) G2 = [[Y, SV, (S)dS = 6757
0 -1 >

2
Addition theorem
b,P,(x) = Y Y"(S)Y,"(S,)  Where b, =[(2n+1)/2]"

[[o,P ()Y, (8,)dS, = 57V, (S,)
S

Covariance

C(S.,S,) = Z Z<W0{W;>Ya (S)Y, (S,)

(i) =[] [JC(8:,8,)Y.(S)Y..(S,)dS, ds,

S10 S

22



If a random field is homogeneous and isotropic on a sphere, the covariance function
depends only on the geodesic distance between the points, and hence can be
expressed as a Legendre series of the form

C(5,,S,) =C(a)=> .C,P,(X)
where X =cos(a) n
(i) =2 CfJ [[P(OY.(S)Y..(S,)dS, ds,

Oifnsn"m=m’

=5 bn‘l(fn R
C,/b,=c,

c, 23



1.7 3D covariance models

A horizontally homogeneous isotropic model in 3D takes the form
B(Sl’ Zy, 82’ Zz) - B(a’ Zy, Zz)
« Aseparable (horizontal-vertical) model can be obtained by assuming
B(a, z,,2,)=B(a)C(z,,z,) :£Z I§n P, (X)jC(Zl, Z,)

» A non-separable covariance model (Bartello and Mitchell, 1992, Tellus)
can be obtained by attaching a different vertical correlation function

as a function of the wavenumber n 1
CO
B(a,z,2,)= ch(zl’ZZ)Pn(X) C, 3
n Cl
C,
C. are px p vertical correlation matrices C,
C, 5
C,
CZ




Sample correlation with a 3D chemical transport model

- Sample from initial homogeneous isotropic correlation model
» Correlation after 4 day of transport

N = 20

Correlations at 50 hPa on 20080605

0.96

0.72

—_ = —

40.48

10.24

.......... - T - N > lo.00

1-0.24

—0.48

£ A

—————

Sl

—0.72

—0.96




Sample correlation with a 3D chemical transport model

- Sample from initial homogeneous isotropic correlation model
» Correlation after 4 day of transport

N = 100

Correlations at 50 hPa on 2008_0605

0.96

0.72

40.48

—10.24

+40.00

H-0.24

—0.48

—-0.72

—0.96




Sample correlation with a 3D chemical transport model

- Sample from initial homogeneous isotropic correlation model
» Correlation after 4 day of transport

N = 500

Correlations at 50 hPa on 20080605

0.96

0.72

40.48

10.24

40.00

41-0.24

—0.48

—-0.72

—0.96




2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as

[X], = E[X"X]

28



2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]
A distance or 2-norm can be defined as
X, = EX"X]
The observation and background error is defined as 20
y—x' =¢°
xP _xt = gb
X" g X'

29



2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as
x|, = E[x"X]

Assume the observation and background errors &°
are uncorrelated E[g"gb]:o then £° L &°

30



2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as
x|, = E[x"X]

An analysis is a linear combination of y and x®
It lies on the line y to x° and
such that it minimizes the analysis error E[(ga)z] X2

31



2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as
x|, = E[x"X]

An analysis is a linear combination of y and x®
It lies on the line y to x° and
such that it minimizes the analysis error E[(ga)z] X2

SO E[ga(y—xa)]:o or g* 1L (y—x%)

32



2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as
x|, = E[x"X]

Because we assume that observation and
background error are uncorrelated then

El(e*)? |+ E|(e*)?|=E|(y - x)?]
R+B=(0-B)?

33



2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as
X, = EX"X]

Since the triangles A x'x*x° ~ A y x'x"
are similar b b
then & ¥ X
x*—-x" &
from which we get

E[(¢°)°] = E[(x* = x")(y = x")]
B=E[(A-B)(O-B)]

one of the Desroziers diagnostic
(Desroziers et al, 2005, QJRMS)




2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space)

Define an inner product of two random vectors X , Y as y
(X, Y)=E[X"Y]

A distance or 2-norm can be defined as
x|, = E[x"X]

The triangles Ay x*x' ~ Ay x'x°
are also similar
from which we get

E[(£°)°] = EI(y = x*)(y = x")]
R=E[(O-A)(O-B)]

the other Desroziers diagnostic
(Desroziers et al, 2005, QJRMS)

35



2.2 The analysis in spectral space

o Consider a 1D periodic domain

36



2.2 The analysis in spectral space

o Consider a 1D periodic domain

» And assume observations each grid points, so H =1

37



2.2 The analysis in spectral space

o Consider a 1D periodic domain
» And assume observations each grid points, so H =1

» \ariances are uniform and correlations are homogeneous isotropic

B=FBF'
B =diag(f2(0), f2(1), f2(1), f2(2), £%(2),..)
R=FRF’

R =diag(r?(0), r2(), r’(1), r’(2), r3(2), ...)

38



2.2 The analysis in spectral space

then ....

The analysis error covariance A can be obtained as
A=(1-K)B where K=B(B+R)™
-R(B+R)"'B

and its spectral decomposition A=F AF
gives spectral variances as

22(k) - r2(k) f2(k) 1 1 1

= or = +
f2(k)+r*(k) a’(k) r’kk) (k)

for each wavenumber k

note that ....
a?(k) < min{r2(k), f2(k) |

39



N
e Forany spectra{cz(k) } in 1D the variance is given by ¢ = ¢*(0)+2) c*(k)
a sum of the spectral components k=1

40



N
For any spectra{cz(k) } in 1D the variance is given by ¢ = ¢*(0)+2) c*(k)
a sum of the spectral components k=1

Lets consider the case where the background and observation error variances
are identical, i.e. o- =0; =1

Variances spectra

10°
— f* (soar, L.=800 km)
10 F — % (uncorrelated, L, =0 km) |
2
I (i3
107
107 F
10-4 L
10—5 L
-6 I
10
100 101 102

wavenumber &

Python script: spectralVariance.py Y



« So for the large scales f? > r* and consequently a® ~ r?

« And for the small scales r* > f* and consequently a°*~ f?

1 1 1

= +
a’(k) ri(k) (k)

Variances spectra

10°
— f* (soar, L.=800 km)
10 F — % (uncorrelated, L, =0 km) |
2
I (i3
107
107 F
10-4 L
107
-6
10
100 101 102

wavenumber &

Python script: spectralVariance.py
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» Most of the analysis correction is done on the large scales

» And there is nearly no analysis correction on small scales

Variances spectra

10°

— f* (soar, L.=800 km)

10 F — % (uncorrelated, L, =0 km) |
2

10

107 F

10-4 L

10—5 L

6 I
10
10° 10!

wavenumber &

Python script: spectralVariance.py

10
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then ...

There is a problem for a high resolution models that covers a wide range of scales
a single correlation model approach is not appropriate to offer an analysis
correction on all scales

Variances spectra

10°

— f* (soar, L.=800 km)

10 F — % (uncorrelated, L, =0 km) |
2

10

107 F

10-4 L

10—5 L

6 I
10
10° 10!

wavenumber &

Python script: spectralVariance.py

10



3. Application of AQ analyses

o Optimum interpolation of AirNow observations with GEMMACH

» Operational since 2013 (03, PM2.5), but running in experimental mode since 2002
(Ménard and Robichaud 2005: ECMWF Proceedings) (Robichaud and Ménard 2014, ACP)

o April 2015 we added NO, NO2, SO2, PM10 (Robichaud et al. 2015, Air Qual Atmos Health)

Cimanche 15 Juin 2014 a 12:002 ¢ Sunday June 152014 at 12:00Z
Late Analysis

R o
a0 k.
L L]
o g
L L]
52 E
- L)
o Jr
NI e.I
K Prevision ozone (modile GER MACH) Analyse ohjective ozone L
Clewne torecay T [GER FAACH masclel) Crevme vbjective analysis
o [
e [y
fopev: GEptuy

z & B &
T
L Is
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3.1 Air Quality Health Index Maps

Canadian Air Quality Health Index (Stieb et al. 2008, JA&WMA)

°Ten year old program that has evolved from an O5-only forecast in
Eastern Canada to a Canada-wide O3, NO,, PM, ;- forecast program

AQHI = 10/10.4x100x[(exp(0.000871[NO,])-1)
+(exp(0.000537[0g4]) -1)+(exp(0.000487[PM, ]) -1)]

*A map of AQHI is delivered operationally (each hour)

Jeudi 07 juillet 2016 & 19:00Z / Thursday July 07 2016 at 19:00Z
Early Analysis (possibly missing US Data,see Late Analysis)

Prévision CAS (modéle GEM-MACH) Analyse objective CAS
AQHI forecast (GEM-MACH model) AGHI objective analysis




3.2 Health impact studies

10 year AQ analyses using AirNow CHRONOS and GEM-MACH
Robichaud et Ménard, 2014, Atmos. Chem. Phys., 14, 1769-1800

Ambient PM, , O;, and NO, Exposures and Associations

with Mortality over 16 Years of Follow-Up in the

Canadian Census Health and Environment Cohort (CanCHEC)
Crouze et al. (2015), Environ. Health Perspect., 123, 1180-1186

The Canadian Urban Environmental (CANUE) Health Research Consortium
Jeff Brook (PI) (ECCC and UofT) with 15 Canadian Universities,

Federal, Provincial and Local Governments. ||
Develop an easy access geospatial data server (e.g. Google Earth) = ",
to support quantitative research on the effect urban environment
on health. Data linked to postal codes will contain information CANUE
on numerous metrics, NDVI, local climatic zones, building density, land use,
noise level, air pollution, greenspace, walkability. Data from 1980°’s up to now.
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Some details about the Ol used for AQ analysis

* Optimum interpolation (Ol) currently
— Uses a local Hollingsworth-Lonnberg fitting to obtain error variance
— Uses a parametrization of error statistics for isolated stations
— Has a seasonal bias correction, based on four large regions
* Next release
— Maximum likelihood estimation of correlation length
— Use compact support correlation models (Ménard et al. 2016, JA&WMA)
— Use hybrid error statistics. Locally averaged H-L or Desroziers in
observation space and ensemble of model runs
— Run in assimilation mode for (at least) verification

o; estimation

locally averaged HL statistics

T 7
o N ﬁ & " Y .
° / / 7 z S 4
\ Opap e Ay
° 1 | g
\e ¢ ¢
i o e \ ° o Jg
o N o o HF
f T
d (=] | D fie

locally averaged Desroziers 5" iteration
e P "’:.73)“ f i N7

L\A\S e t“ &
\ u{
“r ° ° dPs \5\%
o]
. X h ; e
&

4
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4. Kalman filtering
4.1 Theory

In a Kalman filter, the error covariance is dynamically evolved between
the analyses, so that both the state vector and the error covariance are

updated by the dynamics and by the observations.

e Prediction
X', =M x2

n+1

Bn+1:MnAnM:1- +Qn

e Analysis

Xp =X, +K, (y, —HX;)

K, =B,HI(H,B,H +R, |
A =(1-K H, B,

Q
Xt /\O\\—/x/j()\ t

observations

Prediction

Analysis

f
Xn+1

B

n+1

N




The Kalman filter produces the best estimate of the atmospheric state
given all current and past observations, and yet the algorithm is sequential in time
in a form of a predictor-corrector scheme.

From a Bayesian point of view the Kalman filter constructs an estimate based on
p(Xn |yn ’yn—l ""’yO)

Time sequential property of a Kalman filter is however not easy to show, and this is
one of the main result of Kalman (Kalman 1960, Trans. ASME-J. Basic Eng.)



Prediction of errors

M—M( )

M is a discretized model of the atmosphere which expresses our
theoretical understanding but also involves discretization errors

Using the same model to represent the evolution of the true state X
X ., =M n(xf] )+ g/

n+1

where gﬂ is called the model error (or modelling error).

To simply we assume here that the model is linear in X
=M &2 —¢? whereg/* =x'?-x!

n+1

Assuming that model error at time t, is uncorrelated with the analysis error
at time t, then

Bn+1: MnAan +Qn

where B, =E{a,ﬁ (arf )TJ; A, ZE{S‘;‘(SZ‘)TJ



4.2 Advection-diffusion transport in 1D
2
@+ U oc = va—g
ot OX OX
with a uniform wind U. Both the concentration and concentration error obey (1).
Fourier series representation over a periodic domain L, using 2N+1 grid points

L)
X. =
b2N+1
Discrete Fourier series, leading to a unitary matrix, i.e. F* =F'

c(x;) :‘/2N2+1{ +Zak cos[zzkx j+ZN: ksm(znkX j}

The transport model in matrix M can also be transformed in spectral space by
a transformation of the form M =F' M F , where M is a block-diagonal matrix,

with blocks - -
COS( 277K UAt) sin(znk UAtj
2 2 -
exp[— Ay Atk j L L

|2 : (Zﬂ'k UAtj (Zﬂ'k UAtj
SIn L COS 1

()

(j=-N,....0,...,N)




Example of advection of gaussian hill (no diffusion)

0.90
0.75
0.60
0.45
0.30
0.15
200 0.00

t[hours

7918

3959

x [km]

-3959

?918

Python script: propagation.py



4.3 Kalman filter for the advection-diffusion in 1D and H=I

Observing at each grid points, i.e. H =1, and having homogeneous isotropic
model and observation error covariances, Q and R,

the whole Kalman filter equation system can be diagonalized
(Daley and Ménard, 1993, MWR)

fra(k) = m*(k)a, (k) + q(k)
r°(k) f, (k)

a’(k) =
() f2(k) + r’(k)
2 2
where m? (k) = exp 87 I_Aztk j

and we recall that
. =diag(f’(0), f;@), f/@), 72, f7(2),..)
. =diag(a, (0), a; (1), a; (1), a;(2), a,(2), ...)

diag(a®(0), 9*(1), a*(), a°(2), a*(2), ...)
diag(r>(0), r* (), r’@), r?(2), r’(2), ...

B
A
Q
R



x [km]

x [km]

7918

3959

-3959

-7918

7918

3959

-3959

-7918

10

perfect model without assimilation
o) =0e+00, 07 =2e+00,

Truth

Forecasts

Forecast variance

Note that the forecast error variance
is constant over time

o

4 8 12 16 20
t [hours]

Python script: kalmanFilter.py



x [km]

x [km]

-3959

-7918

perfect model with assimilation
o) =0e+00, 07 =2¢+00,0; =le—01

Truth

7918

3959

#
e ——————————

Forecasts
7918

3959

2

-- o

2
Ty

'
w

0 4 8 12 16 20
t [hours]

Python script: kalmanFilter.py

constantly diminjshes

filter divergence



0] =1e—02, 07 =2e¢+00, 0, =1le—01

And when we add model error (and wind was made a bit smaller)

x [km]

x [km]

-3959

-3959

-7918

Truth

7918

3959

-7918

Forecasts
7918

3959

Forecast variance

t [hours]

Python script: kalmanFilter.py



Forecast variance

— o7 imperfect model i

10° — o perfect model ;
i P

—_ U? perfect model without assimilation

-~ o,
10-1 | |

stationary
solution
107 F .
0 2 4 6 8 10

t [hours]

Python script: filterDivergence.py



4.4 Stationary solution

» After a short time (days or less) most Kalman filter reaches a nearly stationary
regime where the initial conditions have been forgotten
» This simple model actually can provide properties of the stationary solution

In spectral space
Combining the first and second equation of
fra(k) = m*(k)a, (k) + q(k)

N S ORH 0
TR0+ )

we get a mapping
nel G(fnz)

for each wavenumber k , and where the mapping function G is of the form

2.2¢2
G<f2): Tzr_i_frz'i_ q°

.|:2




» This mapping has two fixed-point solutions.
* One unstable fixed-point with negative variance (red square)
* One stable fixed-point with positive variance (green square)

Convergence to stationary solution for k=10

0.05
-
— G(f)
—2
c.o4f|® ® [ :
2
mEE
0.03 1
0.02f 1
G
_0
0.01 -
0.00 -

—0.01

0.00 0.01 0.02 0.03 0.04 0.05
2

f
Python script: stationarySolutions.py



Stationary solution in wavenumber space
( no diffusion )

10° Assymptotical variance and convergence spectra
— 7
- aj_'_
— ?'E
- = E+
10—3 L
10 : '
10° 10 10°
wavenumber k 2 f2
The rate of convergence to the stationary solution C, = f”f—fzn
n  'n-1

Python script: spectralVariance.py



foi(k) = m*(k)a; (k) + q(k)
ar? (k) — 22 (k) fn2 (zk)
+ r?(k) — 0 (perfect obs) then f2(k) — g*(k) fy (k) + ro(k)
and a’(k) — r*(k)

The analysis error goes to zero and so the forecast error is simply the model error

Remarks for the inviscid case

e 0°(k) > 0 (perfect model) then a*(k) = f*(k) —» \/rz(k)qz(k)

Because the error variance is conserved by transport, in a perfect model there
IS no growth of error and the analysis error and forecast error are identical

« rate of convergence
as r’(k) > 0 thenc(k) -0
as q°(k) => 0 then c(k) »>1

The slow convergence of perfect models is such that a model takes
a very long time to forget the initial condition.



Stationary solution and convergence rate: model with diffusion

0

Assymptotical variance spectra

10%¢

-1k

105‘

107

107
10%
107 F

6

—  4n? vAt/L* = 0e+00
— 4n’ vAt/L* = 1le-04
— 4n’ vAt/L* = 1e-03

10

Assymptotical convergence spectra

Adding diffusion consjderably
increase the rate of tonvergence
to the stationary soldtion,

and favoring large scales

10* 10

wavenumber k

Python script: viscosity.py



Tutorial

Package

This bundle contains a module (DM93) and a collection of
python scripts illustrating important characteristics of the
Kalman Filter using a simple spectral advection model

Dependencies
Python 2, Numpy, Matplotlib
These packages are readilly available on all major Linux distributions

Installation
To obtain the bundle, you can either download a zip file from
github.com/martndj/DaleyMenard1993

or use git in command line:
git clone https://github.com/martndj/DaleyMenard1993.git



. Implementation of different flavors of Kalman filtering
5.1 Eulerian KF (Lyster et al. 1997, Ménard et al. 2000, Ménard and Chang 2000)

2D advection of long-lived species on isentropic surfaces in the stratosphere
Limb sounding observations (UARS observations CH,, N,O, HNO,,...)

2D isentropic assimilation decoupling

Implementation of KF with no approximations

multilayer 2D assimilation
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Chi-square diagnostic: Tuning of observation and model error variance parameter

Chi-square diagnostic

() = <VT[H(HPf ) +RTV>

=P

v is the innovation: OmF
p is the number of observations

When error variance are evolved
the tendency of the innovation
variance provides information
about model error variance

b b

[+
T
-"-..;‘—?:
r 3 -
o RE
=
;6
; 2
—_ -
I‘_,.-ﬂ-
[
T

b

i 1
A
2F ' - 2
]
“rl"‘aﬂ;'lr | sy
1 b
ﬂ IIIIIIII 0 IIIIIIII
012345678 0123 45678
Days Days

0
0123 456728
Days

* B is the value of the observation error (rep. error)
 Each panel has three curves corresponding to

different value of model error
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Error variance

1 Kalman filter
10 . . S S S
Forecast error no aSS|m|Iat|on
10° | AmmmWmeW\g

SErV tlon érror (mcl rep error)

- instrument error §

Error variance
S S :

J..,_,‘ KF analysrs error -
L n.r\-ﬂ,-,‘ _,"m
A furf,# N

Jha
. L| '4 i‘g'ltlutrlf.l‘ rh m
no ‘model error pANTA
1D_2 i i i i i i i i
0 1 2 3 4 5 A 7 8
Days

all experiments are » 2 tunned



1 - Static error covariance (e.g. Ol)
2 — Evolving the error variance only
3 — Evolving the error correlation only
4 — Full KF
Analysis increments for different schemes:
HALOE CH, data

a) statistical in

-180 -120 -60 0 60 120 180

-180 -120 -60 0 60 120 180

HALQE 1-day obs. locations

920
A A A A A A A A A A AAAdAna
col |
Sparse observations a0
HALOE_lsasoIar Oy A A A A AAAAAdr g
occultation measurement 0
.|
-80

-180 120 -60 0 60 120 180

-180 -120 -60 0 60 120 180

30

-60

-90 |
-180 -120 -60 0 60 120 180

HALOE CH4 in ppmv
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5.2 Ensemble Kalman filter and comparison with 4D-Var

* No chemistry

(Skachko et al. 2014, GMD)

o With full chemistry (Skachko et al. 2016, GMD)

Stochastic EnKF — observation perturbation , with careful tuning of the
model and observation error variance for optimal assimilation

BASCOE CTM

Tracer transport or full chemistry
3.75° x 2.5° horizontal

37 vertical hybrid-pressure levels
ECMWF ERA-Interim wind and
temperature

Assimilation aspects related to CTM

* Offline of the meteorology
* No changes to winds and temp
* Winds and temp. considered perfect

Spatial correlations — spectral

* Follows Errera and Ménard 2012, ACP
« B=LL" where L= ZSA'/2
* X=L0O where®~N(0,I)

Covariance models

* B, Gaussian model; horizontal and vertical

* R horizontally and vertically uncorrelated

* Q additive model error, with same correlation
structure as B,

Observations Relative error formulation

* MLS EOS-Aura ozone profiles

s X =diag(px?)
* R =7r(y°e G‘re.',)z
* n =diag(ax’)LO where Q = (nm7)
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Pressure [hPa]

Pressure [hPa]

No chemistry - assimilation of ozone
Bias and standard deviation of O-P (September — October 2008)
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Orone at 54 hPa on Sep 15, 2008

4D-Var [ppmv] EnFK [ ppmv]
—— = Y

40 -Var - EnKF [ppmv]

0.5

.3

ol

Sep 2008 ozone montlhy mean at 54 hPa
EnFK [ ppmiv] 4D0-War - EnKF [ppmv]

4 e S 0.5
0.3

ol

Assimilation of ozone as passive tracer transport, using the same input errors and with model
error the EnKF and 4D-Var solutions gives nearly identical O-P zonal statistics, but the EnKF

analyses are somewhat smoother than the 4D-Var analyses -



With chemistry - assimilation of O3, N20, H20, HCI, HNO3
Bias and standard deviation of O, (O-P) (September — October 2008)

Mean [90°5,60°5]

Pressure [hPa]

Pressure [hPa]

0.1 ! ! - , ! 0.1 ! Mea!ﬂ [60° SCII‘ N] ! 0.1 ! Mea!ﬂ [60° N.S‘C?‘ N] !
100k am——P¥ | 100bw% | 1 1 4 jo0b L& R L 1
-30 =20 =10 O 10 20 30 =30 =20 =10 O 10 20 30 =30 =20 =10 O 10 20 30
[%] [%] [%]
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1_ __________________________________________________ 1 1_ ____________________________________________________ E
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10F Q8G- - - oboreem e 10 10F- EnKF H
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[ [ EnKF tracer
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0 10 20 30 40 50 0 0 40 50

(%]
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Bias and standard deviation of HCI (O-P) (May — June 2008)

Mean [20° 5,607 5] Mean [60° 5,607 N] Mean [60°N,20°N]
: ; ; F ; ] ; ; ; ; : : ; :
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During this period the chemical lifetime of HCI (in polar vortex) is much shorter than at other
latitudes, because the heterogeneous removal due to the formation of PSC has already
started. This loss process is overestimated in the BASCOE CTM, due to a crude cold-point
temperature parametrization. The CTM underestimates HCI by up to 45% at 30 hPa in the
Antarctic polar vortex region 3



Pressure [hPa]

Pressure [hPal]

Impact on non-observed species (September — October 2008)
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Outstanding issues with multi-specie assimilation

EnKF - O3 and N2O assimilation. Problem of specie localization
Bias, [%]
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Pressure [hPa]

Outstanding issues with multi-specie assimilation
4D-Var - O3 assimilation. Problem due to model error

e BASCOE model suffers from an "ozone deficit" : overestimation of MLS
around 1hPa by 20%

e "For ozone below 70 km, we continue to report a photochemical model
deficit relative to observations... in the 10-50% range..." (Siskind et al., JGR,
2013)

* Rejecting O3 obs. above 3 hPa in the assimilation removes the bias in HCI

(and H20)
Bias [~30°,30°) Bias [~30°,30°] Bias [~30°.30°]
01 ; 01 ; o T — o
0O, | | J/ -~ HCI H,O
1 E 1f . . : 3 E 1F
2 i g |
10 2 10t < 2 10t
—MLS-RI| | | —MLsRI| | ] ——MLS—RI
—MLSR2 | 5 —MLSR2] | —MLSR2| [
100 — — 100 — 100t ——— ——
=50 30 10 10 30 50 =50 -30 -10 10 30 50 =20-15-10 =5 0 5 10 15 20
[*o] [%o] [%0]

R1: As REANO1 but MLS O3 assimilated up to 0.1 hPa
R2=REANO1: Idem with O3 observations rejected above 3 hPa




5.3 Lagrangian KF  P"(x,(t;X,), X,(t;X,), t)=P"(X,, X,,0) with no model error

(Lyster et al. 2004) « One set of trajectories

e Delaunay triangulation for H.
comp ~ Nlog N
* Remapping each 2 to 3 days

covariance evolution i
_~ O(NZ)

covariance evolution
~ O(N)

Eulerian

Lagrangian

8ON 80N
BON 60N
40N 40N
20N+ 20N

EQ EQ
208 205
405 40S e haee gl T s - T g
60S 805
805 a0s

180 120w GOW 120E 180 180 120w 60W 60E 120E 180

0.004 0.008 0.012 0.018& 0.02 0.024 0.028 0.032 0.036

» Lagrangian analysis are much more noisy 77
* Remapping (field and cov.) is needed each 2-3 days because of trajectories clumping



5.4 Lognormal KF

e KF relative error formulation .,
0 —
= |

Sq:uaogq

fog;o

Kalman filter

4 -3 2 -1 CEE] 2 3 4 5

* Lognormal filter

Lognomal fiter

180 -180 -120

Kalman Filter

-120 60 120 180 -180 -120 -60 0 60 120 180
Log Filter
0 2 A 6 .8 1. 1.2 1.4 1.6 1.8
So a lognormal formulation doesn't seem to 78

resolve the kurtosis of the OmF distributions



5.5 Sequential filter (Khatattov et al. 2000, Dee 2003, Eskes et al. 2003,
Raésevall et al. 2007, van der A et al. 2010)

» Error variance evolution using the method of characteristics

» Analysis error variance computed using Chloleski decomposition
or sequential variance update (Dee 2003)

» Error correlation kept fixed

» Model error variance estimated by innovation statistics

Has been applied to 3D CTM of long-lived species in
- Stratosphere (UARS, GOME, Flight planning for measurement campaign)
- Troposphere (MOPITT)

also to multispecies, and to
- humidity in the troposphere
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Using a Choleski decomposition (for small matrices ~ 2000 or less ) and a
prescribed error correlation we can calculate the analysis error variance

vi(x,)=v'(x;)—pl (HP"HT +R)"p, Where p;is the column of P' associated with X,

Assimilated Ozone, ppm Analysis Error, % MLS Measurements, ppm

[ " AREERRRREEEER [ AREEERREEEREE [ AREEERRREERE
0123456789101l ppm 0 2 4 6 8 10 12 1416 % 01 23 45 6 78 91011 ppm

Assimilated Ozone, ppm Analysis Error, % MLS Measurements, ppm

I [ NERERRREEEEER [ NEERRRREEEEEN
0123456789101l ppm 0 2 4 6 8 10 12 14 16 % 01 23 45 6 78 91011 ppm

80
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Summary

1. We have discussed how construct covariance matrices for DA
from standard correlation functions constructed in an infinite domain
2. Characteristics of correlation functions such as smoothness and
correlation length was also discussed
We examined the spectral and orthogonality properties of the analysis
We discussed how AQ analysis (alone) is useful of health studies
. We presented a full analytical solution (in spectral form) of the Kalman
filter with H=I
6. We presented real applications of KF and discussed
- the importance of error correlation
- compared the EnKF with 4D-Var with and without chemistry, and
discuss some outstanding issues
- discussed a Lagrangian KF that reduces considerably the cost
- show that the kurtosis of OmF is not an effect of Gaussian/Lognormal
distributed errors
- put into context what is a sequential filter

oA w
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Thank you
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