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Improvement in error covariances

• spectral error covariances

• tuning of the error variances

Errera and Ménard (2012) ACP

1. Covariance modelling (motivation)
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Ways to construct positive-definite covariance matrices 

Covariance function  
infinite domain

Covariance matrix in
a periodic domain

1- Subspace (manifold) and
2 - Spatial discretization

Fourier transform   

Spectral representationphysical space representation

Fourier series     
representation   

1- Discretize in wavenumber
2 – Truncate in wavenumbers

Fourier series
representation 
of a periodic 

covariance function
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1.1 Covariance functions (Gaspari and Cohn 1999, QJRMS)

Definition 1:  A function P(r,r’) is a covariance function of a random field X if
])()(][)()([),( rrrrrr ′−′−=′ XXXXP

Definition 2: A covariance function P(r,r’) is a function that defines positive
semi-definite matrices when evaluated on any grid.  
That is, letting ri and rj be any two grid points, the matrix P
whose elements are Pi,j =  P(ri,rj)  is defines a covariance matrix,
when P is a covariance function

The equivalence between definition 1 and 2 is a result of the reproducing kernel
property of covariance functions (Rasmussen and Williams, 2006: Gaussian Processes 
of Machine Learning.) 

Remark Suppose a covariance function is defined in a 3D space,            .  
Restricting the value of r to remain on an manifold (e.g. the surface of a unit sphere)
will also define a covariance function, and a covariance matrix (e.g. a covariance
matrix on the surface of a sphere)

3R∈r



6

Correlation function A correlation function C(r,r’) is a covariance function
P(r,r’) normalized by the standard deviation at the points r and r’

),(),(
)',(),(

rrrr
rrrr

′′
=′

PP
PC

Homogeneous and isotropic correlation function If a correlation function
is invariant under all translation and all orthogonal transformation, then the
correlation function become only a function of the distance between the two
points, )(),( 0 rrrr ′−=′ CC
Smoothness properties
• The continuity at the origin determines the continuity allowed on the rest of the

domain. For example, if the first derivative is discontinuous at the origin, then
first derivative discontinuity is allowed elsewhere (see example with triangle)
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Examples of correlation functions (infinite domain)

1. Spatially uncorrelated model (black)
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2. First-order auto-regressive model
(FOAR) (blue)
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where L is the correlation length scale

3. Second-order auto-regressive model
(SOAR) (cyan)
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4. Gaussian model (red)
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Positive definite matrix (Horn and Johnson ,1985: Matrix Analysis, Chap 7)

A real n x n symmetric matrix A is positive definite if

for any nonzero vector c.  A is said to be positive semi-definite if
0>cAcT

0≥cAcT

Properties
• The sum of any positive definite matrices of the same size is also 

positive definite
• Each eigenvalue of a positive definite matrix is a positive real number
• The trace and determinant are positive real numbers.

Covariance matrix
The covariance matrix P of a random vector X = [X1, X2, …, Xn]T is the matrix
P = [Pij] in which 
and E is the mathematical expectation.

[ ] [ ]iijjiiij XXXXXXP EE =−−= where))((

1.2 Covariance matrices
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Property:  A covariance matrix is positive semi-definite
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Remarks
1 - It is often necessary in data assimilation to invert the covariance matrices, 

and thus we need to have positive definite covariances

2 – The positive definite property is global property of a matrix, and it is not
trivial to obtain

Correlation matrix

Create a diagonal matrix      of error standard deviation 

then a correlation matrix C is related to P as follows

)(diag P=Σ

11PC
CP

−−=
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ΣΣ

ΣΣ

Σ
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b)  Triangle






≤−
−

−=
otherwise

njifor
d

ji
jiC

0

1),(























000.1750.0500.0250.0000.0
750.0000.1750.0500.0250.0
500.0750.0000.1750.0500.0
250.0500.0750.0000.1750.0
000.0250.0500.0750.0000.1

for n=4 eigenvalues

1365.0
1910.0
2989.0
3090.1
0646.3
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Examples:

a)  Truncated parabola
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000.1937.0750.0437.0000.0
937.0000.1937.0750.0437.0
750.0937.0000.1937.0750.0
437.0750.0937.0000.1937.0
000.0437.0750.0937.0000.1

for n=4 eigenvalues

0716.0
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2500.1
8216.3
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Correlation function on a periodic domain (sub-domain / manifold approach)

Consider a Gaussian model on a 2D plane

2
2

2
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2

exp),( R
p

C
G

∈












 ′−
−=′ r

rr
rr

)cos1(2 22 θ−=′− arr

Consider as a manifold of R2, a circle of radius a

Now define a coordinate x along the 
circle ,  

axxaaxx ≤′≤−=−′ ,for
2π
θ

then we get
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Any subdomain or manifold of R2 can also be a domain
to define a covariance function.



13

Ways to construct positive-definite covariance matrices 

Covariance function  
infinite domain

Covariance matrix in
a periodic domain

1- Subspace (manifold) and
2 - Spatial discretization

Fourier transform   

Spectral representationphysical space representation

Fourier series     
representation   

1- Discretize in wavenumber
2 – Truncate in wavenumbers

Fourier series
representation 
of a periodic 

covariance function
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Gaussian model
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Second order autoregressive model (SOAR)

To obtain a spectra for finite domain we set
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π1.3 Spectral representation
infinite domain

Discretize in wavenumber
space for a Fourier series
representation



15

Spectral representation of homogeneous isotropic correlations
• On a unit circle

where θ is the angle between the two position vectors, and where
and all the Fourier coefficients am are nonnegative

• On a unit sphere

where all the Legendre coefficients bm are nonnegative.
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1.4 Spectral representation over a periodic domain

Consider the complex notation of Fourier series
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For the covariance to depend only on                             we need
i.e. the Fourier modes are uncorrelated   
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Real functions – unitary Fourier series
Fourier series representation over a periodic domain L, using 2N+1 grid points
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φFφ ˆ=• F is a Fourier matrix  
• F it is written here as a unitary matrix, 1FF −=T
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Assume uncorrelated modes, i.e.
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How to construct an homogeneous isotropic correlation function in spectral space
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Transforming in physical space 
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A homogeneous covariance only depends on distance 
To obtain such a model we assume 
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Correlation length vs correlation length-scale parameter

20

1)(
c

x L
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Correlation length based on the 
curvature of the correlation function 
at the origin x = 0 (Daley, 1991)

for a Gaussian correlation model
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606.0)( 2/1 ≈== −eLxC cG

We define the correlation length
of an arbitrary correlation model
as the distance for which the  
correlation reaches a value of 0.606 

GcGCcSOARcFOARc pLpLpLpL ==== 5756.03494.15005.0

1.5 Length-scales / smoothness / realizations
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Different correlation models means different smoothness of the underlying 
stochastic realization
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Sample correlation from an ensemble of stochastic realization

Python script: sampleCorrelations.py

The spectral decomposition of a correlation
matrix C (in 1D periodic domain) is given by

where

is a diagonal matrix with repeated eigenvalues.
Random spatially correlated perturbations
can be obtained by  

where  ek are the columns (or eigenvectors) of F
and                        are uncorrelated normally
distributed random variables,

So  
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1.6 Spectral representation on a sphere
(Errera and Ménard, 2012, ACP)Spherical harmonics

)(ˆ),(ˆ),(
0

SYY
n

nm

m
n

m
n

N

n
α

α
αψϕλψϕλψ ∑ ∑∑

−==

==

where ),(and),( ϕλα == Smn
)exp()()( λµα imPSY m

n=
ϕµ sin=

Orthogonality

∫ ∫∫∫
−

′′∗
′

′
′ ==

1

1

2

0

)()(),(),(
2
1

S

m
m

n
n

m
n

m
n dSSYSYddYY δδµλµλµλ

π αα

π

Covariance

∫∫∫∫

∑∑

′
∗∗

′

∗

′

∗
′

=

=

21

212121

2121

)()(),(

)()(),(

SS

dSdSSYSYSSC

SYSYSSC

αααα

αα
α

αα
α

ψψ

ψψ

Addition theorem

)()()(

)()()(

211

21

SYdSSYxPb

SYSYxPb

m
n

n
n

S

m
nnn

n

nm

m
n

m
nnn

′
′′

−=

−

=

=

∫∫

∑
δ

where [ ] 2/12/)12( += nbn



23

If a random field is homogeneous and isotropic on a sphere, the covariance function
depends only on the geodesic distance between the points, and hence can be
expressed as a Legendre series of the form
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1.7  3D covariance models  

),,(),,,( 212211 zzaBzSzSB =

A horizontally homogeneous isotropic model in 3D takes the form

• A separable (horizontal-vertical) model can be obtained by assuming
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• A non-separable covariance model (Bartello and Mitchell, 1992, Tellus)
can be obtained by attaching a different vertical correlation function 
as a function of the wavenumber n
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• Sample from initial homogeneous isotropic correlation model
• Correlation after 4 day of transport 

N = 20

Sample correlation with a 3D chemical transport model



N = 100

• Sample from initial homogeneous isotropic correlation model
• Correlation after 4 day of transport 

Sample correlation with a 3D chemical transport model



N = 500

• Sample from initial homogeneous isotropic correlation model
• Correlation after 4 day of transport 

Sample correlation with a 3D chemical transport model



28

2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2
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2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2
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The observation and background error is defined as  



30

2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2

txbx

y

oε

bε

Assume the observation and background errors
are uncorrelated                       then  [ ] 0ο =bεεE bo εε ⊥
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2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2

txbx

y

oε

bε

aε

ax

An analysis is a linear combination of  y and xb

It lies on the line y to xb and 
such that it minimizes the analysis error [ ]2)( aεE
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2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2

txbx

y

oε

bε

aε

ax

An analysis is a linear combination of  y and xb

It lies on the line y to xb and 
such that it minimizes the analysis error 
so                                 or[ ] 0)( =− aa xyεE )( aa xy −⊥ε

[ ]2)( aεE
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2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2

txbx
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ax

Because we assume that observation and 
background error are uncorrelated then 
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2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2

txbx

y
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ax

Since the triangles  
are similar

then 

from which we get

one of the Desroziers diagnostic
(Desroziers et al, 2005, QJRMS)
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2. Other ways to look at what is an analysis
2.1 Geometric view (Hilbert space) 
Define an inner product of two random vectors X , Y as  

[ ]YXEYX T=,

A distance or 2-norm can be defined as  

[ ]XXEX T=
2

txbx

y

oε

bε

aε

ax

The triangles  
are also similar
from which we get

the other Desroziers diagnostic
(Desroziers et al, 2005, QJRMS)
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2.2 The analysis in spectral space
• Consider a 1D periodic domain
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2.2 The analysis in spectral space
• Consider a 1D periodic domain

• And assume observations each grid points, so  H = I
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2.2 The analysis in spectral space
• Consider a 1D periodic domain

• And assume observations each grid points, so  H = I

• Variances are uniform and correlations are homogeneous isotropic
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2.2 The analysis in spectral space

The analysis error covariance  A can be obtained as

and its spectral decomposition   
gives spectral variances as

for each wavenumber k  
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• For any spectra               in 1D the variance is given by
a sum of the spectral components                            
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• For any spectra               in 1D the variance is given by
a sum of the spectral components                            

∑
=

+=
N

k
C kcc

1

222 )(2)0(σ

122 == bo σσ
• Lets consider the case where the background and observation error variances  

are identical, i.e. 

{ })(2 kc

Python script: spectralVariance.py



42Python script: spectralVariance.py

• So for the large scales  

• And for the small scales                          
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43Python script: spectralVariance.py

• Most of the analysis correction is done on the large scales  

• And there is nearly no analysis correction on small scales                         



44Python script: spectralVariance.py

then ... 

There is a problem for a high resolution models that covers a wide range of scales
a single correlation model approach is not appropriate to offer an analysis 

correction on all scales                       
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3. Application of AQ analyses
• Optimum interpolation of AirNow observations with GEMMACH
• Operational since 2013 (O3, PM2.5), but running in experimental mode since 2002

(Ménard and Robichaud 2005: ECMWF Proceedings) (Robichaud and Ménard 2014, ACP)
• April 2015 we added NO, NO2, SO2, PM10 (Robichaud et al. 2015, Air Qual Atmos Health)
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Canadian Air Quality Health Index  (Stieb et al. 2008, JA&WMA)
•Ten year old program that has evolved from an O3-only forecast in 
Eastern Canada to a Canada-wide O3, NO2, PM2.5 forecast program

•A map of AQHI is delivered operationally (each hour)

AQHI = 10/10.4×100×[(exp(0.000871[NO2])-1)
+(exp(0.000537[O3]) -1)+(exp(0.000487[PM2.5]) -1)]

3.1 Air Quality Health Index Maps
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10 year AQ analyses using AirNow CHRONOS and GEM-MACH
Robichaud et Ménard, 2014, Atmos. Chem. Phys., 14, 1769-1800

Ambient PM2.5, O3, and NO2 Exposures and Associations 
with Mortality over 16 Years of Follow-Up in the 
Canadian Census Health and Environment Cohort (CanCHEC)
Crouze et al. (2015), Environ. Health Perspect., 123, 1180-1186

The Canadian Urban Environmental (CANUE) Health Research Consortium
Jeff Brook (PI) (ECCC and UofT) with 15 Canadian Universities,
Federal, Provincial and Local Governments.

Develop an easy access geospatial data server (e.g. Google Earth)
to support quantitative research on the effect urban environment
on health.  Data linked to postal codes will contain information
on numerous metrics, NDVI, local climatic zones, building density, land use,
noise level, air pollution, greenspace, walkability.  Data from 1980’s up to now.

3.2 Health impact studies
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• Optimum interpolation (OI) currently
– Uses a local Hollingsworth-Lönnberg fitting to obtain error variance
– Uses a parametrization of error statistics for isolated stations
– Has a seasonal bias correction, based on four large regions

• Next release
– Maximum likelihood estimation of correlation length
– Use compact support correlation models (Ménard et al. 2016, JA&WMA)
– Use hybrid error statistics. Locally averaged H-L or Desroziers in

observation space and ensemble of model runs
– Run in assimilation mode for (at least) verification

Some details about the OI used for AQ analysis
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4. Kalman filtering
4.1 Theory



The Kalman filter produces the best estimate of the atmospheric state
given all current and past observations, and yet the algorithm is sequential in time
in a form of a predictor-corrector scheme.

),,,|( 01 yyyx −nnnp
From a Bayesian point of view the Kalman filter constructs an estimate based on 

Time sequential property of a Kalman filter is however not easy to show, and this is
one of the main result of Kalman (Kalman 1960, Trans. ASME-J. Basic Eng.)
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4.2 Advection-diffusion transport in 1D
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with a uniform wind U.   Both the concentration and concentration error obey (1). 
Fourier series representation over a periodic domain L, using 2N+1 grid points
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The transport model in matrix M can also be transformed in spectral space by
a transformation of the form                        ,  where       is  a block-diagonal matrix,
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Example of advection of gaussian hill (no diffusion)

Python script: propagation.py



Observing at each grid points, i.e.  H = I , and having homogeneous isotropic
model and observation error covariances, Q and R, 

the whole Kalman filter equation system can be diagonalized
(Daley and Ménard, 1993, MWR)
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4.3 Kalman filter for the advection-diffusion in 1D and H=I



Python script: kalmanFilter.py

Note that the forecast error variance
is constant over time



Python script: kalmanFilter.py

with assimilation

Note that the forecast error variance
constantly diminishes     filter divergence



Python script: kalmanFilter.py

And when we add model error (and wind was made a bit smaller)



Python script: filterDivergence.py

stationary
solution



4.4 Stationary solution
• After a short time (days or less) most Kalman filter reaches a nearly stationary

regime where the initial conditions have been forgotten
• This simple model actually can provide properties of the stationary solution

in spectral space

Combining the first and second equation of  
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• This mapping has two fixed-point solutions.  
• One unstable fixed-point with negative variance (red square)  
• One stable fixed-point with positive variance (green square)

Python script: stationarySolutions.py



Stationary solution in wavenumber space
( no diffusion )
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ffcThe rate of convergence to the stationary solution

Python script: spectralVariance.py



Remarks for the inviscid case 

•
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Because the error variance is conserved by transport, in a perfect model there
is no growth of error and the analysis error and forecast error are identical

• rate of convergence 
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The slow convergence of perfect models is such that a model takes 
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Stationary solution and convergence rate: model with diffusion

Python script: viscosity.py

Adding diffusion considerably
increase the rate of convergence 
to the stationary solution, 
and favoring large scales



Package
This bundle contains a module (DM93) and a collection of 
python scripts illustrating important characteristics of the 
Kalman Filter using a simple spectral advection model

Dependencies
Python 2,  Numpy,  Matplotlib
These packages are readilly available on all major Linux distributions

Installation
To obtain the bundle, you can either download a zip file from 
github.com/martndj/DaleyMenard1993

or use git in command line:
git clone https://github.com/martndj/DaleyMenard1993.git

Tutorial



5. Implementation of different flavors of Kalman filtering 
5.1 Eulerian KF (Lyster et al. 1997, Ménard et al. 2000, Ménard and Chang 2000)

• 2D advection of long-lived species on isentropic surfaces in the stratosphere
• Limb sounding observations (UARS observations CH4, N2O, HNO3,…)
• 2D isentropic assimilation decoupling
• Implementation of KF with no approximations

CLAES (IR emission)

HALOE (solar occultation)

multilayer 2D assimilation 
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Chi-square diagnostic

( )χ ν νk
T f
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ν is the innovation: OmF
p is the number of observations

• β is the value of the observation error (rep. error)
• Each panel has three curves corresponding to

different value of model error 

When error variance are evolved
the tendency of the innovation
variance provides information 
about model error variance

Chi-square diagnostic: Tuning of observation and model error variance parameter
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Kalman filter

observation error  (incl. rep. error)

KF analysis error

Forecast error no assimilation

analysis error no assimilation

instrument error

no model error

Error variance  

all experiments are  χ 2 tunned
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1 - Static error covariance (e.g. OI) 
2 – Evolving the error variance only

3 – Evolving the error correlation only
4 – Full KF

Analysis increments for different schemes:
HALOE CH4 data

Sparse observations
HALOE is a solar
occultation measurement

68



5.2 Ensemble Kalman filter  and comparison with 4D-Var   

69

• No chemistry           (Skachko et al. 2014, GMD)
• With full chemistry (Skachko et al. 2016, GMD)

Stochastic EnKF – observation perturbation , with careful tuning of the
model and observation error variance for optimal assimilation



Bias and standard deviation of O-P (September – October 2008)
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No chemistry – assimilation of ozone



Assimilation of ozone as passive tracer transport, using the same input errors and with model 
error the EnKF and 4D-Var solutions gives nearly identical O-P zonal statistics, but the EnKF 
analyses are somewhat smoother than the 4D-Var analyses 
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Bias and standard deviation of  O3 (O-P) (September – October 2008)
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With chemistry – assimilation of O3, N2O, H2O, HCl, HNO3
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Bias and standard deviation of  HCl (O-P) (May – June 2008)

During this period the chemical lifetime of HCl (in polar vortex) is much shorter than at other 
latitudes, because the heterogeneous removal due to the formation of PSC has already 
started. This loss process is overestimated in the BASCOE CTM, due to a crude cold-point 
temperature parametrization. The CTM underestimates HCl by up to 45% at 30 hPa in the 
Antarctic polar vortex region 
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Impact on non-observed species (September – October 2008)
CH4

NOx
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Outstanding issues with multi-specie assimilation 
EnKF – O3 and N2O assimilation.  Problem of specie localization
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O3 HCl H2O

Outstanding issues with multi-specie assimilation 
4D-Var – O3 assimilation.  Problem due to model error



Eulerian Lagrangian

covariance evolution
~  O(N2)

covariance evolution
~  O(N)

5.3 Lagrangian KF
(Lyster et al. 2004)

)0,,(),);(,);(( 212211 XXXxXx ff PtttP = with no model error

• One set of trajectories
• Delaunay triangulation for H.  

comp ~  N log N
• Remapping each 2 to 3 days

77• Lagrangian analysis are much more noisy
• Remapping (field and cov.) is needed each 2-3 days because of trajectories clumping



5.4 Lognormal KF

• Lognormal filter

• KF relative error formulation
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So a lognormal formulation doesn't seem to
resolve the kurtosis of the OmF distributions



• Error variance evolution using the method of characteristics
• Analysis error variance computed using Chloleski decomposition 

or sequential variance update (Dee 2003)
• Error correlation kept fixed
• Model error variance estimated by innovation statistics

Has been applied to 3D CTM of long-lived species in
- Stratosphere (UARS, GOME, Flight planning for measurement campaign) 
- Troposphere (MOPITT)

also to multispecies, and to
- humidity in the troposphere

5.5 Sequential filter     (Khatattov et al. 2000, Dee 2003, Eskes et al. 2003, 
Rösevall et al. 2007, van der A et al. 2010)

79



Using a Choleski decomposition (for small matrices ~ 2000 or less ) and a 
prescribed error correlation we can calculate the analysis error variance 
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i
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+−=

Khattatov et al. 2000

where pi is the column of Pf associated with xi
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Summary

1. We have discussed how construct covariance matrices for DA
from standard correlation functions constructed in an infinite domain

2. Characteristics of correlation functions such as smoothness and 
correlation length was also discussed

3. We examined the spectral and orthogonality properties of the analysis
4. We discussed how AQ analysis (alone) is useful of health studies
5. We presented a full analytical solution (in spectral form) of the Kalman

filter with H=I
6. We presented real applications of KF and discussed

- the importance of error correlation
- compared the EnKF with 4D-Var with and without chemistry, and 

discuss some outstanding issues
- discussed a Lagrangian KF that reduces considerably the cost
- show that the kurtosis of OmF is not an effect of Gaussian/Lognormal

distributed errors
- put into context what is a sequential filter 
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Thank you
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