NCAR/ASP 2016 Summer Colloquium on Air Quality

Air Quality Forecast and Modeling over Asia

For a Bridge between Scientific Findings and Policy

Zifa Wang

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC) , Institute of Atmospheric Physics (IAP)

Chinese Academy of Sciences

August 1, 2016

Outline

Preface

- I. Program goals, research strategy and milestones
- II. Scientific support and major achievements
- III. International scientific and collaborative networks
- IV. Contributions to capacity building and academic training
- V. Strengths, Weaknesses, Opportunities, Threats

Clean Day

\sim 15 µg m⁻³

Polluted Day

~200 µg m⁻³

中国科学院大气物理研究所

Severely Polluted Day

~470 µg m⁻³

Light Polluted Day

Heavy Polluted Day

Facing Problems of Asia (China)

Worldwide PM2.5 concentration distribution (source: NASA)

世界卫生组织 DWH0201

Worldwide PM₁₀ concentration distribution (source: WHO)

Severe regional air pollution

Increasing public needs for environmental information

Vast economic activities along with great ambient environmental changes

- Vs. Limited information availability/ Confining control strategies
- Vs. Under developing monitoring/forecasting techniques & public service capacity
- Vs. Lack of timely evaluation and quantified estimation (obsolete emission inventory few risk assessment & cost-benefit analysis)

Program Background 建设背景

According to "The Action Plan for Air Pollution Prevention and Control", it is explicitly required to establish the air quality monitoring & warnings system, and manage the heavy air pollutions appropriately.

《大气污染防治行动计划》要求:建立监测预警应急体系,妥 善应对重污染天气。

National Center for Environmental Quality Forecasting was established in CNEMC directed by MEP of China in the summer of 2013.

环境保护部2013年在中国环境监测总站成立"国家环境质量预 报预警中心"。

Outline

Preface

- I. Program goals, research strategy and milestones
- II. Scientific support and major achievements
- III. International scientific and collaborative networks
- IV. Contributions to capacity building and academic training
- V. Strengths, Weaknesses, Opportunities, Threats

I Program goals, research strategy and milestones

Development of a New-generation Atmospheric Environment Prediction System with

New modules: aerosol micro-physics dynamic module, secondary organic aerosol module, visibility module, toxicity module et al.

Advanced modeling techniques: emission inversion method, data assimilation, ensemble forecast, and source apportionment technique

Evolution and formation mechanisms of air pollutants in the atmospheric boundary layer, the nonlinear response relationship of emission and atmospheric pollutants, source apportionment and the key factors of regional haze formation

Integration of the regional air quality monitoring network, a realtime air quality forecasting system, and a technique to support decision making for air quality management

I Program goals, research strategy and milestones

Involving scientists from various labs of IAP and a large network of external collaborators, the program develops a modeling system perspective of the interactions between anthropogenic activities, emission control measures, their environmental and climate effects, and how they interact across different spatial and temporal scales.

A variety of prediction methods and tools are used to support the real-time air quality forecast over China.

These analyses are of immediate policy relevance and provide scientific guidance to the central and local governments of China.

Program Design 国家预报预警体系规划设计

4 Diagram of Forecasting Organization : 4-levels

Operational System Development in China

- IAP of CAS (Institute of Atmospheric Physics, Chinese Academy of Sciences) has developed an ensemble air quality forecast modeling system combining NAQPMS, CMAQ, CAMx, WRF-chem, etc. for the system.
- The multiple-models system was successfully applied in the air quality forecasting operation for 2008 Beijing Olympic Games, 2010 Shanghai World Expo, and 2010 Guangzhou Asian Games.
- 中科院大气所集成了NAQPMS、CMAQ、CAMx、WRF-chem等 国际上先进空气质量数值预报模型,建立了中国第一套多模型空气质 量数值集合预报系统,成功业务化应用于2008北京奥运会、2010上 海世博会、2010广州亚运会的城市空气质量预报。

National Platform of Operational Air Quality Forecast 国家预报预警业务平台

Super Computer (130 T flops) 计算能力

技术支持:中国科学院大气物理研究所 曙光信息产业(北京有限公司) 北京融昭普瑞科技有限公司

艮

日期	SO2	IAQI	NO2	IAQI	PM10	IAQI	СО	IAQI	03-1h	IAQI	03-8h	IAQI	PM2.5	IAQI	AQI	首要污染物	指数级别
20150911	13	13	13	16	19	19	0.252	6	79	25	75	38	17	24	38		1
20150912	9	9	13	16	12	12	0.224	6	87	27	83	42	10	14	42		1
20150913	15	15	25	31	23	23	0.335	8	73	23	68	34	19	27	34		1
20150914	46	46	49	61	101	76	0.785	20	77	24	67	34	88	116	116	PM2.5	3
20150915	68	59	56	70	166	108	0.983	25	91	28	81	41	149	199	199	PM2.5	4
20150916	63	57	58	73	178	114	0.971	24	101	32	92	46	160	210	210	PM2.5	5
20150917	52	51	37	46	155	103	0.849	21	92	29	83	42	140	186	186	PM2.5	4
						_				_							

'重

气象与污染预报

Comparative analysis system

国家预报预警工作机制 Working Procedures

Operational Procedure

(Source: 总站、中科院大气所、广东、上海监测中心, 2013)

预报信息服务 Air quality information service

Application and Performance

Air Quality Assurance in the National Major Activities

The 70th National Day

The 60th National Day

Outline

Preface

- I. Program goals, research strategy and milestones
- II. Scientific support and major achievements
- III. International scientific and collaborative networks
- IV. Contributions to capacity building and academic training
- V. Strengths, Weaknesses, Opportunities, Threats

Major achievements 1

Development of Nested Air Quality Prediction Modeling System (NAQPMS)

Nested Air Quality Prediction Modeling System (NAQPMS)

1.Updated gas-chemistry mechanism

67 species and 176 reactions

2.On-line source appointment scheme based on air quality model

3. Model uncertainty analysis scheme

JAC 2006; JGR, 2007; ACP 2008, 2010, 2013; SOLA 2008, 2010, 2012; GRL 2009; AE 2011; Tellus – B 2013; ACP 2014; EP 2014; AE 2014; SC 2014

Uptaked gas-chemistry mechanism RA->CBN-IV->CBMZ

NAQPMS+APM

NAQPMS+APM describes nucleation, condensation/evaporation, coagulation and size-resolved deposition.

Introduction to APM

Yu Fangqun, et al, 2012, 2013, 2014

Carbonaceous particles size bins

Coagulation can be considered;

✓ Model can be constrained by observed BC size distribution.
Particles number size distribution in Beijing

Evolution of microphysics parameters

•D_{BC+coating}/D_{BC} can be as high as 1.5 or obove, BC mixing state was changed;

• Condensational sink was higher in pollution episodes;

•Sulfuric aid concentration showed a evident diurnal variation;

•Nucleation rate was higher in NPF event;

• NPF can be identified and reproduced by NAQPMS+APM.

The APM was coupled with a recently developed version of NAQPMS in order to study the spatial and seasonal variations of aerosol number concentration over China

Simulated ground-level monthly mean number concentration of CN10nm (cm⁻³) Chen et al., SOLA,10,83-87

On-line source appointment scheme

$$\overline{Fr_i} = \frac{1 - Fr_1 - Fr_2 - Fr_3}{\nabla \overline{Fr_i}} \overline{Fr_i}$$

$$\frac{d(C \bullet Fr_i)}{dt} = (Fi_{(adv+conv+diff)} \bullet Fr_i^{'} + P^i_{chem} - (Fo_{(adv+conv+diff)} - L_{chem} - L_{drv+wet}) \bullet Fr_i$$

Impact of traffic restriction on NO₂ concentrations

Sources of SO₂,NO2,PM₁₀ and O₃ at Beijing in 2008 Beijing Olympics

Uncertainty analysis scheme

Monte Carlo Sensitivity Analysis method

Advantages

- no tangent-linear and adjoint model
- easy to deal with a set of about 100 or more input parameters

Importance ranking of uncertainty sources

Sites	importance ranking of uncertainty sources in ozone simulation				
	1	2	3	4	
Urban Beijing	Local VOC emissions	NO ₂ Photolysis constant	Local NO _x Emissions	Wind direction	
Tianjin	Local VOC Emissions	Local NO _x Emission	NO ₂ Photolysis constant	Wind speed	
Tangshan	Local VOC Emissions	Wind direction	NO ₂ Photolysis constant	$R (NO+O_3)$	
Baoding	Local NO _x Emissions	Local VOC Emissions	Wind direction	$R (NO+O_3)$	

Major achievements 2

Inverse Modeling & Data Assimilation System for air quality forecast

Inverse Modeling for air quality forecast

S.L.Napelenok et al., 2008)

Model Uncertainty Analysis

Source of bias between mod and obs: $\overline{(C_o - C_p)^2} = \overline{(\partial C_p)^2}_{(a-1)} + \overline{(\partial C_o)^2}_{(a-2)} + \underline{(\overline{d})^2}_{(b)} + \underline{\sigma_c^2}_{(c)}$				
	Uncertainty factors	Distribution	Perturbation	Polynomial basis
ζ ₁	NO _x emission	Beta	[-10%,+10%]	Jacobi
ζ ₂	u	Beta	[-10%,+10%]	Jacobi
ζ ₃	v	Beta	[-10%,+10%]	Jacobi
ζ4	t	Beta	[-10%,+10%]	Jacobi
ζ ₅	NO2 Dry Deposition velocity	Beta	[-10%,+10%]	Jacobi
ζ	NO ₂ Vertical Diffusion coeff	Beta	[-10%,+10%]	Jacobi

 ζ_6 NO2 Vertical Diffusion coeffBeta ζ_7 NO2 Photolysis coeffBeta

gGBC-NNAQUMIS_zs1_UUA1_NDR ((mitt10000))

gBEC NNACTINES <u>2</u>41 <u>UUA4 NO</u>DE ((amitt.11000%))

gBEC-NAQUMES_221_UA57_ND2 ((unitt.11000%))

Jacobi

[-10%,+10%]

07 0.1

6,17

Ø.-8

Q.A

Ø. 8A

Kalman Filter Inversion

Result——Updated Emission Inventory

Using ChemDAS for Routine data assimilation at China National Environment Monitoring Center

National Air Quality Monitoring Network (>1500 stations)

Near real data assimilation

Assimilating surface observations of sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone(O₃), fine particulate matter (PM_{2.5}) into the model with three nested domains

00Z09DEC2015 (CST) Hourly Surface $PM_{23} \mu g m^{-3}$ / Wind (m·s⁻¹) DOZO9DEC2015 Model With DA (CST) Hourly Surface $PM_{22} \mu g m^{-3}$ / Wind (m·s⁻¹)

Routine air quality forecast with and without DA

24-hour PM_{2.5} forecast at CNEMC during Nov 1 - Dec 30, 2015

Comparison of root mean square errors ($\mu g/m^3$) of the forecasts

	NAQPMS without DA	NAQPMS with DA	Improved by
24-h forecast	124.7	77.4	38%
48-h forecast	125.2	84.2	33%
72-h Gompasy ison o	133.7 f biases (µg/m ³) of	94.1 the forecasts	30%

	NAQPMS without DA	NAQPMS with DA	Improved by
24-h forecast	76.3	37.6	51%
48-h forecast	78.1	46.8	40%
72-h forecast	91.1	57.3	37%

Using ChemDAS to estimate air pollution state

DA significantly improved PM_{2.5} estimation

Cross Validation (CV) Experiments

CV experiments	Simulated PM2.5		Analyzed PM2.5	
• AP • 1111111111111	RMSE (µg/m ³)	Relative errors	RMSE (μg/m ³)	Relative errors
CV01	139.0	56%	28.5	20%
CV02	131.6	57%	25.6	19%
CV03	144.9	66%	27.1	19%
CV04	139.2	68%	36.1	21%
CV05	141.6	64%	27.4	16%

Observation stations were divided into 5 subsets.

In each experiment, one subset of observations was withheld for validation

Hourly PM_{2.5} Reanalysis dataset in 2013

Estimating adult mortality attributable to $PM_{2.5}$ exposure in China with assimilated $PM_{2.5}$ concentrations based on a ground monitoring network

Liu et al., STOTEN, 2016

Major achievements 3

Ensemble Model System for air quality forecast

Design of Emsemble Model System

The spatial distribution of PM10 concentration

- Forecast the spatial distribution of
 PM10 concentration
 - In red region, NAQPMS match to the observation better than the other two
 - But in blue region, CMAQ is better
 - No best single model, thus, multimodels ensemble is necessary

PM10 simulation in Beijing

 The models have good skill in PM10 simulation. The four processes of air pollution accumulation are simulated well in Augest 2008.

PM10 simulation in Beijing

• During the Beijing Olympic Games, all of the three models PM10 simulation concentration overestimate. Emission control and rainfall may be the most important reasons

Hindcast for Beijing Olympic Games

• Hindcast for PM10 during Beijing Olympic Games shows that PM10 emission may be cut off 200 tons/day.

Wang et al. 2010

Major achievements 4

Enhanced air pollution by aerosol direct effect using a two-way coupled model: WRF-NAQPMS

Schematic of (a) offline and (b) two-way coupled WRF-NAQPMS

Impact of Aerosol radiative feedback on PBLH

January 2013

Impact of Aerosol radiative feedback on PM2.5 concentration

PM2.5 Relative change ~ 8.2 %

WRF-NAQPMS

Vertical distribution of Temperature, TKE and PM2.5 difference

Outline

Preface

- I. Program goals, research strategy and milestones
- II. Major achievements
- III. International scientific and collaborative networks
- IV. Contributions to capacity building and academic training
- V. Strengths, Weaknesses, Opportunities, Threats

III. International scientific and collaborative networks

Established a network of external collaborators from around the world.

Host the "Joint International Center on Air Quality Modeling Studies (JICAM)" founded by IAP and Asia Center for Air Pollution Research (ACAP).

Contributes to the MICS-Asia (Model Intercomparison Study for Asia)

Co-Coordinating the activity, making scientific and working plan, organizing workshops and provides advanced modeling analysis tools, meteorological model results, dust emissions, observations network as input to the joint model calculations.

MICS-Asia Phase I and II

- To obtain common understanding of model performance and uncertainties in Asia.
- MICS-Asia Phase I (1998-2000), long-range transport and deposition of sulfur.
- MICS-Asia Phase II (2004-2009), taking into account more species than Phase I.

sulfur, nitrogen compounds, ozone and aerosols

Achievement of MICS-Asia II were published in AE in 2008

MICS-Asia III

February 2008, Austria the 10th MICS-Asia Workshop Discussing the prospect of Phase III

March 2010, Dalian the 1st International Workshop on Atmospheric Modeling in East Asia

December 2010, Sanya

the 2nd Workshop on Atmospheric

Modeling in East Asia

giving an opportunity for more Asian scientists to participate

Determining three topics of MICS-Asia Phase III and leaders

September 2011, Chengdu the Third Workshop on Atmospheric Modeling in East Asia

July 2012, Beijing the International Workshop on MICS-Asia III

materializing more concrete work plan for each of the three topics

further discussing work plans for MICS-Asia Phase III

March 2013, Kumming the International Workshop on MICS-Asia III

Progress of MICS-Asia Phase III

FOCUS in MICS-Asia III

Air Pollution Complex in Asia: Regional Haze and High Ozone

• Topic 1: Model Intercomparison

(Leaders: Z. Wang, K. Yamaji and J. Fu)

• *Topic 2:* Development of reliable emission inventories in Asia

(Leaders: J. Woo, T. Ohara, Q. Zhang)

• *Topic 3:* Air Quality/Climate Change (Leaders: G.Carmichael, ZW Han, Y.F Cheng)

To understand and improve air quality models, we need to

- I. Assessing the ability of models to reproduce pollutant concentrations under highly polluted conditions (Regional Haze and High Ozone);
- II. Quantifying uncertainties of each process (phys and chem), model resolutions (hori and vert) and key boundary layer parameters.
- III. Investigating the air quality responses to specific emissions perturbations in a common case.
Multi-Model comparison of BC (Jan.2010)

The simulation performance on BC are almost the same except M1 in Jan.,2010.

20

18 16

14

12

10

8

2

Higher BC concentration in North China Plain (NCP) and South Tibetan Plateau

BC simulation in different regions

Higher concentration distributes over China, especially in the north

Outline

Preface

- I. Program goals, research strategy and milestones
- II. Major achievements
- III. International scientific and collaborative networks
- IV. Contributions to capacity building and academic training
- V. Strengths, Weaknesses, Opportunities, Threats

IV. Contributions to capacity building and academic training

Super-Computer System Platform.

Regional air quality monitoring network.

Organized a number of NAQPMS training sessions.

Hosted 57 students as parts of IAP summer school program and provided supervision to 37 PhD and mater students.

Lecture of "Atmospheric Environment" in the Master Program of University of Chinese Academy of Sciences.

Outline

Preface

- I. Program goals, research strategy and milestones
- II. Major achievements
- III. International scientific and collaborative networks
- IV. Contributions to capacity building and academic training
- V. Strengths, Weaknesses, Opportunities, Threats

Atmospheric Environmental Model: Critical bridge between human activities and environmental change

Advection scheme for Adaptive Grids

(a) t = T/20

(b) t = T/10

(c) t = T/5

Zheng et al., 2015, GMD

Fluidity

Mineral Dust Transport Model with Adaptive Grids

Thank you!

Evolution of Air Pollution and Boundary Layer

8:00am Nov. 22, 2015

Taken at 280m

9:00am Nov. 22, 2015

Fi

finility.

111

IN STREET, SALES, MICH.

11

10:00am Nov. 22, 2015

11111111

111

1 100 TOTAL 101 T

187

A B B B B

10:30am Nov. 22, 2015

Gradient

調練度

111

111

OF LOSS TAXABLE AND IN

411

##3

國體度

111

二日日日日

「「「「

in many in

111

Major achievements 5

Modeling study of regional severe hazes over North China Plain and its implications on emergency pollution control

Photo taken from 300 m tower

2013年1月的北京

从300米的高空每天同一时间拍摄同一场景的照片, 这些照片分割后合成为一张,一条代表一天的景色。

The worst air quality at Beijing since 1998

Vertical Observations at IAP 325 m Tower Site, Beijing

Aerosol was mostly constrained below 400m by stable conditions in Jan. 2013, different from previous years

Simulated monthly average concentrations of PM_{2.5} and surface wind fields (m s^{□1}) in East China in January 2013

21 regions was tagged to estimate contributions from regional transport

Regional transport in haze

50

35

20

10

Monthly mean PM₂₅

	Site	Local	Transport	
ug/m3	Beijing	48.3%	51.7%	
µg/m 200	Tianjin	32.6%	68.4%	
150	Qinghuan adao	54.2%	46.8%	
115 75	Cangzhou	47.2%	52.8%	

Regional transport was significant in regional hazes

A transport case: in 10-12th Jan. 2013 from south to north

A time lag of PM_{2.5} concentration peak from south to north

Transport fluxes of PM_{2.5} in North China Plain

Contributions of emissions in three Hebei sub-regions to surface PM_{2.5}(%)

Hebei province emergency plans

- Depending on source regions and sectors in hazes, three sub-regions was divided: northern cities, middle cities and southern cities
- Calculating efficiency of each emission to receptor PM_{2.5} concentrations(gm⁻³/ton), source regions and sectors with high efficiency is designed to reduce more.
- 3. Calculating response of secondary pollutants to their precursors emissions.
- 4. Two grade measures: III: heavily to moderate
 II: severely to moderate;

Considering the coupled impact of meteorological fields, distribution of emissions and chemistry.

III grade alert

Target: reduction PM_{2.5} from heavy level to moderate level

		工业		机	动车	扬尘
以区划 —	SO_2	NO_x	烟/粉尘	NO_x	颗粒物	颗粒物
家庄市	88.0	106.2	73.2	30.1	3.2	28.2
『郸市	90.2	74.7	94.4	27.1	10.4	17.9
《台市	39.2	37.6	38.3	15.3	9.8	15.0
定市	29.5	18.9	9.0	29.5	29.8	45.3
「水市	15.2	17.6	7.5	6.8	3.9	10.1
		111 级打	贝警响应顽排重	t(t/d)		
		工业		机z	边车	扬尘
丁政区划 -	SO_2	NO _x	烟/粉尘	NO _x	动车 颗粒物 3.2 10.4 9.8 29.8 3.9 为车 颗粒物 2.8 6.4 4.1	颗粒物
唐山市	165.6	171.4	220.8	37.7	2.8	14.2
沧州市	22.3	25.4	9.3	30.9	6.4	9
廊坊市	23.2	15.3	3.7	23.2	4.1	3.3

Sub-region I: Southern city

Sub-region II: Middle city

		III 级予	页警响应减排量	赴(t/d)		
二水区上		工业		机	动车	扬尘
丁以区划一	SO_2	NO_x	烟/粉尘	NO_x	颗粒物	颗粒物
秦皇岛市	23.5	21.9	28.8	16.4	4	3
长家口市	27.6	30.2	86	5.3	0.8	7.1
承德市	27.1	15.3	6.8	7.5	1.4	5.5

Sub-region III: Northern city

$PM_{2.5}$ concentrations reduction from each control measure μgm^{-3}

行政区划	工业			木	扬尘	
	SO ₂ 减排	NO _x 减排	烟尘减排	NO _x 减排	颗粒减排	颗粒减排
石家庄市	2.74	3.35	0.59	0.95	0.16	5.08
唐山市	0.10	0.10	0.30	0.00	0.10	0.20
秦皇岛市	0.00	0.00	0.00	0.00	0.00	0.00
邯郸市	1.92	1.59	0.16	0.58	0.07	1.35
邢台市	1.71	1.23	0.14	0.67	0.08	1.51
保定市	1.96	1.32	0.39	2.06	0.23	13.15
张家口市	0.00	0.00	0.00	0.00	0.00	0.01
承德市	0.00	0.00	0.00	0.00	0.00	0.00
沧州市	0.11	0.13	0.01	0.16	0.02	0.23
廊坊市	0.08	0.05	0.00	0.08	0.01	0.04
衡水市	1.44	1.66	0.07	0.64	0.08	1.36
合计	10.07	9.45	1.67	5.14	0.75	22.92

Il grade alert Target: reduction PM_{2.5} from severely level to moderate level

		II 级预	警响应减排量	(t/d)		
		工业		机动车		扬尘
丁以区划 -	SO_2	NO_x	烟/粉尘	NO _x	颗粒物	颗粒物
5家庄市	352.1	424.9	292.7	120.6	12.7	112.8
邯郸市	360.8	298.8	377.4	108.2	41.8	71.6
邢台市	156.9	150.3	153.3	61.3	39.1	60.1
保定市	117.8	75.5	36	117.8	119.2	181.1
衡水市	60.8	70.3	30	27.1	15.6	40.3
		II 级预	警响应减排量	(t/d)		
		工业		机动车		扬尘
丁政区划 -	SO_2	NO_x	烟/粉尘	NO _x	颗粒物	颗粒物
唐山市	538.2	557	717.6	122.7	9.2	46.2
沧州市	72.5	82.5	30.2	100.5	20.8	29.1
廊坊市	75.5	49.8	12.1	75.2	13.4	10.6
		II 级预	警响应减排量	(t/d)		
그 카이 다 아이		工业		机ā	动车	扬尘
「叹区划 -	SO ₂	NO _x	烟/粉尘	NO _x	颗粒物	颗粒物
秦皇岛市	93.8	87.6	115	65.6	15.8	11.8
长家口市	110.4	120.8	344.1	21	3.3	28.5
承德市	108.4	61.3	27.2	29.8	5.4	22.1

Sub-region I: Southern city

Sub-region II: Middle city

Sub-region III: Northern city

Emission reductions of each city when all subregions exceeded alter levels

II 级预警响应减排量 (区域一)(t/d)							
	工业			机z	机动车		
丁政区划 -	SO_2	NO _x	烟/粉尘	NO _x) <u></u>	颗粒物	
5家庄市	343.4	414.4	289	117.6	12.5	111.3	
唐山市	359.3	371.5	753.1	20.4	8.9	12.2	
秦皇岛市	7.9	19.2	13.9	10.2	4	6.3	
邯郸市	351.9	291.4	372.7	105.5	41.2	70.7	
邢台市	153	146.6	151.4	59.8	38.6	59.3	
保定市	114.9	73.6	35.5	114.9	93.2	132	
长家口市	11.3	25.9	93.6	6.9	3.9	10	
承德市	8.5	12.6	7.9	3.9	3.6	10.4	
沧州市	34.3	39	34.4	47.5	23.7	33.2	
廊坊市	30.1	19.8	11.6	30	12.9	10.2	
衡水市	59.3	68.6	29.7	26.4	15.4	39.8	

$PM_{2.5}$ concentrations reduction from each control measure μgm^{-3}

行政区划	工业		工业机和		机动车	扬尘
	SO ₂ 减排	NO _x 减排	烟尘减排	NO _x 减排	颗粒减排	颗粒减排
石家庄市	10.3	13.4	2.4	3.8	0.7	21.3
唐山市	0.5	0.5	0.8	0.3	0.4	6.2
秦皇岛市	0.0	0.0	0.1	0.0	0.0	0.0
邯郸市	7.7	6.4	0.7	2.3	0.3	9.4
邢台市	6.8	6.5	0.6	2.7	0.3	6.0
保定市	10.3	7.3	4.6	8.3	0.9	31.3
张家口市	0.0	0.0	0.0	0.0	0.0	0.1
承德市	0.0	0.0	0.0	0.0	0.0	0.1
沧州市	0.5	0.5	0.0	0.6	0.2	1.9
廊坊市	0.3	0.2	0.0	0.3	0.0	1.2
衡水市	5.8	6.7	0.3	2.6	0.3	5.4
合计	42.1	41.5	9.4	20.9	3.1	83.0

- NAQPMS model reproduced temporal and distribution of pollutants in hazes in Jan 2013, reasonably.
- Regional transport played a key role although a weak wind prevailed in heavy haze episodes.
- The coupled effect of meteorological field, emission distribution and atmospheric chemistry should be considered in emergency plan.
- Emissions control in emergency plan can efficiently decrease PM_{2.5} pollution grade, but not disappear haze.