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Patriarch of Atmospheric Trace Gas Retrievals

Dr. Clive D. Rodgers (Oxford 
University Emeritus) has had an 
indelible impact on 
atmospheric retrievals.  

He brought estimation theory 
from statistics and electrical 
engineering into the trace gas 
remote sensing community. 

Most modern trace gas satellite 
retrieval algorithms utilize this 
theory, e.g. TES, MOPITT, IASI, 
OMI, MLS, etc. 



Remote sensing of the atmosphere
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Atmospheric remote sensing is based upon radiative transfer, which 
quantifies  the molecular absorption and scattering of electromagnetic 
radiation at different wavelengths through the atmosphere.



Radiation Transfer: thermal infrared
In the nadir (down-looking) 
thermal infrared, gases 
absorb and emit spectral 
radiation (wavelength-
dependent ν).  

The radiation that is 
emitted to space is the sum 
of the transmittance 𝜯𝜯 and 
the Planck emission B at 
layer i and temperature Ti.

The layer transmittance is 
a function of optical depths, 
which are defined in terms 
of gas aborption, 𝜅𝜅j, and 
gas amount xj.  
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Setting the stage: from physics to math
The Forward Problem

The Inverse Problem

Equation of 
radiative transfer

Inverse model 
of radiative transfer



Posing your problem

•An  inverse problem is the inference of parameters (or functions)  of a 
system given observables of that system.

• How do I  infer the vertical distribution of ozone given 
observations of infrared spectral radiances?

•Inverse problems are frequently ill-posed

The notion of ill-posed problems
is attributed to J. Hadamard
through the definition of a well-
posed problem:

1. A solution exists
2. The solution is unique
3. The solution depends 

continuously on the data

Goal of inverse methods is to develop regularization approaches that transform an ill-
posed problem to a well-posed problem. 



Tripartite Challenge

Forward problem

Inverse problem

Characterization
problem

The retrieval problem can decomposed into 3 components:
1. Forward Problem: What is the relationship between what can be measured and 

what we want to know? 
2. Inverse Problem: How to determine what I want to know given what can be 

measured.
3. What is the relationship between what has been estimated (“retrieved”) with what I 

want to know? 



The Forward Model



Everything is blurry: the additive noise model

•y what you measure.
•F is the forward model
•x is the state vector (what you want to know)
•n is the noise vector (the precision of your measurement)

Inverse methods hinge upon an understanding of 
the functional properties of F and a priori knowledge 
of x and n



How to be sensitive: the Jacobian
We start by representing the equation of radiative transfer as a 
vector valued non-linear function:

We will focus on the Taylor series expansion of the forward model

For linear problems, ∇F does not depend on x. For, nonlinear problems it does.



How to be sensitive: the Jacobian
The Jacobian can be written more explicitly as 

where for compactness, we’ll redefine the Jacobian as

The Jacobian describes how much an observable will change if the state
changes.



Characterization of the vertical distribution of ozone is critical to 
understanding its role in atmospheric chemistry and climate

Test case: ozone



Jacobians and the greenhouse gas effect
TES clear-sky observation at 41°S, 150°W
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Filling the columns

The columns of the Jacobian
define the sensitivity of the radiances
to ozone at a specific altitude



Where is it?
Spectral resolution impacts vertical resolution.

In the thermal infrared,
vertical resolution is obtained by exploiting 
the pressure dependence of spectral lines

At a spectral resolution of 0.07 cm-1, 
the spectral radiances respond 
differently to changes in the vertical
distribution of ozone.  

At a spectral resolution of 1.43 cm-1,
the spectral radiances respond 
in the same way to changes to the
vertical distribution of ozone

The spectral wings of
the ozone lines have
greater sensitivity to the 
lower troposphere than 
the stratosphere



Filling the rows

The rows of the Jacobian define the sensitivity of a specific radiance
to ozone for each altitude.



The Inverse Problem



How often does that happen?  
From physics to statistics. 

Let’s say that we made some guess, x0, about ozone at a particular place, 
e.g., Boulder. What would we see at the instrument? 

We know about the sensitivities, K

To determine x, we need to know something
about x and n

If we can statistically characterize x and y in general, we can estimate
x in particular given a measurement y.  



Bayes’ Theorem
We want to know the probability of the atmospheric state x, e.g., ozone, 
given a measurement y, e.g., radiances: How do we calculate it?

Start with the joint probability distribution function (pdf): 

Rodgers, 2000

The conditional pdf is:

The marginal distribution is



Bayes’ Theorem

Rodgers, 2000

The joint pdf can be written two ways: 

Substituting these into the 
conditional pdf leads to a posteriori 
distribution from the Bayes’ Theorem:

Let’s break it down:

A priori knowledge of the state

Observation given knowledge 
of the state (data distribution)

Marginal distribution. Need 
integration of the joint pdf



The Multivariate Gaussian case

The data distribution is defined in terms of the additive noise model

The prior distribution is

The prior mean and covariance can be defined as 

where 

The data mean and covariance can be defined as 

The data model assumes  measurement noise statistics  are known 



Climbing the hill: MAP solution

In practice p(y) can ignored for the 
purposes of estimating x

The Maximum A Posteriori (MAP) solution is consequently found  from 

The MAP solution can be written as a numerical problem:

Algebraic manipulation:

is the sum of Gaussians—and also a Gaussian—and has a 
maximum: The most probable value of x given y.



The geometry of Bayes
Bayes Theorem provides a statistical justification for the least squares 
problem 

Example: Let 

• Large ellipsoid is a contour of the prior pdf
• Cylinder is a contour of the pdf of the state 

given only the measurement
• Small ellipsoid is a contour of the posterior 

pdf:
Rodgers, 2000



The optimal estimate

noise

Forward model

Observed radiances

Jacobian

True profile A priori profile

The optimal estimate is a balance between
what the data can tell us about the state and
what we already know about it. 
How do we characterize the balance?

The estimate is sensitive to the ozone plume but 
does not completely capture it.
How do we characterize the resolution of the 
estimate?



Characterization



The Third Pillar: Characterization
A powerful part of this methodology is the characterization of the estimate 
relative to the true state.  

Consider the approximation

substitute into the estimate

Gain matrix Averaging kernel matrix

The optimal estimate (retrieval) is related to the true (but unknown state)
by the averaging kernel matrix.  



Averaging Kernel

The averaging kernel matrix, A, is one of the most important characterizations
of the estimate

The averaging kernel matrix describes the change in the estimate due to the
change in the true state.  This relationship can be further described by looking 
at the rows and columns of A with respect to the estimate. 

Averaging kernel Impulse response



Averaging Kernel Matrix
The averaging kernel and the impulse response provide complimentary 
information about the estimate.

Bowman et al, 2006

The averaging kernel describes how the true state changes the estimate at
a particular altitude, xi, whereas the impulse response describes how the 
entire estimate changes to the true state a particular altitude, xi. 

Averaging Kernel Impulse Response

⌃



Where is it? Resolution

The averaging kernel provides a 
means of defining the vertical 
resolution of the estimate, i.e., how 
well can the estimate (ozone) at one 
altitude be distinguished from 
another?

The resolution can be calculated from 
full-width half height.  

A

Averaging kernel

~6 km

Bowman et al, 2002

A more robust, but more abstract definition of resolution is the degrees
of freedom for signal (dofs), which is the trace of the averaging kernel 
matrix:

The dofs provides a measure of the independent information that can be 
determined from an estimate. It can be calculated over subsets of the 
atmospheric state



The what and where of vertical resolution

The averaging kernel is a function of 
the sensitivity, which includes spectral 
resolution, precision, the inherent 
variability of the atmospheric state. 

Different instrument designs can 
achieve resolution at different altitudes
by making trade-offs such as spectral 
resolution and precision. 

Sensitivity to ozone in the lower most 
troposphere requires much higher 
spectral resolution than the upper 
troposphere.

Courtesy J. Worden



The many flavors of error

Smoothing error: error in the estimate 
from the lack of resolution (as defined 
by the averaging  kernel).  

Note that the smoothing error is 
dependent on the variability of the 
state: CO2 will be different than O3.  

Measurement error: error from random 
noise.  

Smoothing error measurement error

The total error can be split into two useful terms: 
smoothing and measurement error

Worden et al, 2004



Putting it together
TES observations during the NOAA TEXAQS 2006 campaign

TES retrievals of elevated ozone and
CO are seen near Houston on Aug 23rd, 
2006.  

How do we characterize this retrievals?

http://tes.jpl.nasa.gov/TexAQS_2006/browse_run4911.html



A Cloudy View
The primary driver of 
sensitivity for thermal 
instruments is surface 
temperature and clouds.

The TES-retrieved cloud 
optical depth is high off the 
coast of Texas
but low directly on land.

The diagonal of the ozone  
averaging kernel shows
high sensitivity in the lower 
troposphere. 

A (ozone)



Where is the pollution?
O3 AK CO AK

• O3 and CO  between the surface and 680 hPa and 18-20N is driven by the a priori.
• At 680 hPa, the retrievals are influenced by the true atmosphere from near surface to 

about 300 hPa. 
• Poleward of 40N, upper tropospheric O3 sensitivity at 215 hPa increases because of 

decreasing tropopause  height. 



Observation operators:
connecting measurements to assimilation



Conclusions/Future Directions
• Atmospheric trace gas retrievals are built on 3 pillars:

– Forward Model (atmospheric radiative transfer)
– Inverse Model (optimal estimation)
– Characterization/Error Analysis (averaging kernels, dofs, etc.)

• Observation operators-–constructed from averaging 
kernels—are powerful tools to compare remote sensing 
estimates to other data, e.g., sondes, and to assimilation 
systems

• Non-Gaussian, non-linear approaches, e.g., Markov Chain 
Monte Carlo (MCMC), will become increasingly 
important. 



BACKUP
Backup



DOAS UV Retrieval

surface emission

atmospheric 
emission

Multi-Spectral Remote Sensing

NIR: Provides 
column 

information

TIR: Provides FT 
profile information

solar backscatter

UV: Provides 
partial 

column 
information



Two eyes are better than one:
IR and UV

UV and IR measurements provide complimentary sensitivity to 
ozone.  Worden et al, GRL, 2007 and Landgraff and Hasekamp, 
JGR,  2007 showed the feasibility of estimating boundary layer 
ozone. Fu et al, ACP, 2013 and Cuesta et al, ACP, 2013 have 
demonstrated the potential for TES and IASI. 
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UV
TOMS
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SBUV
SOLCE
OSIRIS
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OMI
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GOME-2



AIRS/OMI--Aug 23rd, 2006

• The TES optimal estimation retrieval algorithm was applied to the combination of AIRS and 
OMI radiances to infer O3 and CO.  

• Elevated CO and O3 in Pacific NW associated with biomass burning. 
• DOFS show skill in separating upper and lower troposphere.
• DOFS and Cloud OD show the British Columbia obscured by clouds
• Elevated Texan LT ozone associated with agricultural burning and antrhopogenic emissions

215 hPa

650 hPa



All OMI Averaging 
Kernels show 
sensitivity to 
boundary layer

Vertically resolved 
estimates of free 
troposphere ozone

Improved 
resolution in 
boundary 
layer

Diagnosis of synthetic retrievals



OLR bias in chemistry-climate models

�
=

In the tropics, discrepancies lead to 
over 300 mWm-2 for individual 
models and up to 100 mWm-2 for 
the ACCMIP ensemble.

The Atmospheric Chemistry-Climate Model Intercomparison
Project (ACCMIP) estimated historic radiative forcing (RF) 
and future response using consistent emissions for the IPCC 
5th assessment. (Lamarque et al, 2013)
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