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~WRsa Patriarch of Atmospheric Tracé-Gas Retrievals -

Dr. Clive D. Rodgers (Oxford
University Emeritus) has had an

Serivs on Atmmespheric, Ooeamdc and Planetary Physsos = Vol 2

indelible impact on INVERSE METHODS
atmospheric retrievals. FOR ATMOSPHERIC
SOUNDING

Sl
He brought estimation theory TRy i Feohie

from statistics and electrical
engineering into the trace gas
remote sensing community.

Most modern trace gas satellite
retrieval algorithms utilize this
theory, e.g. TES, MOPITT, IASI,
OMI, MLS, etc.
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- -Remote sensing of the atr nosphere™ - -

Radiative
Transfer

Clerbaux et al

Atmospheric remote sensing is based upon radiative transfer, which
guantifies the molecular absorption and scattering of electromagnetic

radiation at different wavelengths through the atmosphere.




~Wsa “Radiation Transfer: thermal infrared - -

In the nadir (down-looking)
thermal infrared, gases
absorb and emit spectral
radiation (wavelength-
dependent v).

The radiation that is
emitted to space is the sum
of the transmittance T and
the Planck emission B at
layer | and temperature T,.

The layer transmittance is
a function of optical depths,
which are defined in terms
of gas aborption, !, and
gas amount x/,
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- Setti 'n*g‘t_hé stage: from p hyls-’iﬂcsmtoa math

The Forward Problem

— Equation of
radiative transfer ||_...
>'5 240

x ¢ RY

"he Inverse Problem

Inverse model
of radiative transfer




&\ - = Posing your problem

*An inverse problem is the inference of parameters (or functions) of a
system given observables of that system.
 How do I infer the vertical distribution of ozone given
observations of infrared spectral radiances?
Inverse problems are frequently ill-posed

The notion of ill-posed problems PRINCETON UNIVERSITY BULLETIN.
is attributed to J. Hadamard —
through the definition of a well- i Sre 10 o
posed pro blem: m.;: ;.:::Eﬁggz.::nf E;:x;:::::;ﬁ g;,; é:::eepondeutuu non i une donnée
1. A solution exists TION PRYSIQUE. Relativement  Péquation de Laplace
2. The solution is unique -;.: CARE e ® St gt g =0,
ue ne nous pes senlement L'ocea- .
3. The solution depends et e o, lates) e rtsets st o o
continuously on the data




-# == Tripartite Challenge .

F(x):RY - RM

Forward problem

|
|
X — x — X 1 |Characterization
, | problem
1

R(y) : RM — RV

Inverse problem

The retrieval problem can decomposed into 3 components:
1. Forward Problem: What is the relationship between what can be measured and

what we want to know?
2. Inverse Problem: How to determine what | want to know given what can be

measured.
3. What is the relationship between what has been estimated (“retrieved”) with what |

want to know?




The Forward Model



~MRsa ~Everything is blurry: the additive noise model -

y =F(x)+n

ey what you measure.

*F is the forward model

X is the state vector (what you want to know)

*n is the noise vector (the precision of your measurement)

Inverse methods hinge upon an understanding of
the functional properties of F and a priori knowledge
of xand n

x = R(y)



-®x How to be sensitive: the Jacobian

We start by representing the equation of radiative transfer as a
vector valued non-linear function:

fi(x)

F(x) = F2{x) f(x) : RY = R

f MO(X)_

We will focus on the Taylor series expansion of the forward model
F(x + 0x) = F(x) + VF(x)dx

For linear problems, VF does not depend on x. For, nonlinear problems it does.




W to be sensitive: the Jacobian -

The Jacobian can be written more explicitly as

- O f1 0f1 Of1 =
83?1 8332 ox
ofe  9f2 . Of

VE()= [T T o

Ofm Ofm .. 9Ofm
_ Ox1 Oxo or N _

where Ly — [X] n for compactness, we’ Il redefine the Jacobian as

VF(x) = Ky = K(x)

The Jacobian describes how much an observable will change if the state
changes.
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. Test case: ozone

o AR -

Characterization of the vertical distribution of ozone is critical to
understanding its role in atmospheric chemistry and climate
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" Jacobians and the greenhouse gas effeet™ - -

TES clear-sky observation at 41°S, 150°W
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- 0f1 | 0f1 | 0f1 7
6513‘1 8:132 10x
Of2 | O0f2 .. |9Of2

VEG) = [T T

Ofm | |9fm | Ofm
_Ox1 | | Oxo 10N _

The columns of the Jacobian
define the sensitivity of the radiances
to ozone at a specific altitude



Spectral resolution impact
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In the thermal infrared,

vertical resolution is obtained by exploiting

the pressure dependence of spectral lines

At a spectral resolution of 1.43 cm™t,
the spectral radiances respond
in the same way to changes to the

At a spectral resolution of 0.07 cm-1,
the spectral radiances respond
differently to changes in the vertical

vertical distribution of ozone

distribution of ozone.
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WRsa =i Filling the rows =

* -
O, vmr Jacobians for two spectral resolution Fa5e88 -: % _afl . afl o
[ ST | O 0T 2 0x
; 1.43 cm™ resolution ; afz af2 o 8 2
: | : : O0x1 Oxo oxr N

R =T R O M Of M « . Ofm
L Oz Ox2 0T N _

The rows of the Jacobian define the sensitivity of a specific radiance
to ozone for each altitude.




The Inverse Problem



How often‘does that .,happen“P

‘-‘lnl’

_ From physics to statistics:.

Let’s say that we made some guess, x,, about ozone at a particular place,
e.g., Boulder. What would we see at the instrument?

y — F(x0) = K(x — xqg) +

/’

We know about the sensitivities, K

To determine x, we need to know something
about x and n

If we can statistically characterize x and y in general, we can estimate
X in particular given a measurementy.



We want to know the probability of the atmospheric state x, e.g., ozone,
given a measurementy, e.g., radiances: p(X|y) How do we calculate it?

Start with the joint probability distribution function (pdf):

The conditional pdf is: 1.0
A p(X7 Y)
p yX — 0.5
R TeY

The marginal distributionis - oo

p@%j/M&YMy

-0.5

p(X,y)

P(y)

()

0.5 1.0
Rodgers, 2000



The joint pdf can be written two ways:

p(y,x) = p(y[x)p(x) e

pix,y) = pixly)p(y) N )
Substituting these into the L e

conditional pdf leads to a posteriori L rotgesam
distribution from the Bayes’ Theorem: . [~

0.5

x)p(x)| |Let’sbreakit down:
p(X‘y) — p(yZL(})’Z)?( ) p(X) A priori knowledge of the state

p(y‘X) Observation given knowledge
of the state (data distribution)

p(}’) Marginal distribution. Need
integration of the joint pdf




The prior distribution is
1

) = (g |~ (5

The prior mean and covariance can

Elx|=x, F[(x—x%x4)(x—

The data distribution is defined in t

B 1
p(y|X) — (2#)”/2|Sn|1/2

exp |-

The data mean and covariance can be defined as

Sn

Enl=n=0

1

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002 -

0.001

0

_____

V'SThx — Xnﬂ

o T

14

El(n—f)(n—n)']

The data model assumes measurement noise statistics are known
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Climbing the hill: MAP.

Algebraic manipulation:

ln p(X|Y) 0.4 hl p(Y|X) -+ ln p(X) -+ CONST Inpractice p(y) can ignored for the

purposes of estimating x
Inp(x[y) o< [y = FGOI2-1 + [Ix — xa|%

p(X‘Y) is the sum of Gaussians—and also a Gaussian—and has a
maximum: The most probable value of x giveny.

The Maximum A Posteriori (MAP) solution is consequently found from

d .
deY) ‘x:fc — 0 X = /Xp(x|y)dx
X

The MAP solution can be written as a numerical problem:

min {(y = F(x)) "8 (y = F(x)) + (x = x0) "8 (x = x0)}




Bayes Theorem provides a statistical justification for the least squares

problem

min {(y ~ F(x)) TS (v = F(x)) + (x = xa) "S5 (x = x0)}

x=x,+(K'S;'K+S; 1) 'K'S }(y —F(x,))

S=(K'S:'K+S_H)™!

Example: Let x € R? y € R

e Large ellipsoid is a contour of the prior pdf

e (ylinderis a contour of the pdf of the state
given only the measurement

» Small ellipsoid is a contour of the posterior
pdf:

Rodgers, 2000
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- = = The optimal estimate .-

1BZ: Run = 2831, Seq = 805, Scan = 2, Lat = —27.8730, Lon = 150.860, Elev (m)
-5 T T T T
1.2x 10

E | o8 pr emio-8 o
|- " 2 rodiance /8 venr{z )
o . ‘ . L .
50 1000 1050 1100 1150 /

\ Jacobian noise
Observed radiances | Y _‘}(}Ea) ~ K(X — X ) -+
Forward model /

True profile A priori profile

% =x,+ (K'S;'K+S; 1) 'K'S Yy — F(x,))

The optimal estimate is a balance between 3
what the data can tell us about the state and
what we already know about it.

How do we characterize the balance?

The estimate is sensitive to the ozone plume but 13
does not completely capture it. :
How do we characterize the resolution of the
estimate?




Characterization



% The Third Pillar: Characterization -~ -

A powerful part of this methodology is the characterization of the estimate
relative to the true state.

Consider the approximation

y — F(Xa) ~ K(X — Xa) + I substitute into the estimate

x=%,+(K'S;'K+S;")"'K'S ' (K(x —x,) +n)

X =X, + A(x —x,) + Gn

Gain matrix Averaging kernel matrix
0% Tgq-1 ~1\-1lpe T Q-1 0x

— = A=_—=GK
G oF (K'S,'’K+S," ) "K' S, I

The optimal estimate (retrieval) is related to the true (but unknown state)
by the averaging kernel matrix.




The averaging kernel matrix, A, is one of the most important characterizations
of the estimate

Ox
A=—=GK
Ox

The averaging kernel matrix describes the change in the estimate due to the
change in the true state. This relationship can be further described by looking
at the rows and columns of A with respect to the estimate.

Averaging kernel Impulse response
0Z; ox

= (&, 0X —— = ;A
aX < 1’)*7 > 6&;‘1’ 1%k,



-Wea = = Averaging Kernel Matrix .

The averaging kernel and the impulse response provide complimentary
information about the estimate.

. AveragingKernel Impulse Response
10F W\ . 10F .
' m 1020.28 m 1020.28
! m681.29 m681.29
y | - | m421.70 m421.70
~ [ /| m261.02 ~ m261.02
o [ =< | m1561.56 |1 8 mi161.56 |1
< m 100.00 |: iE, m 100.00 |1
o [ gégo . 3 E 2820 :
B 100 - [ o | 3 vt 100 F - 31 E
@ m23.71 3 0 =23 71
o = 14.68 @ »14.68
& 9.09 & 9.09
{:[s] ) PUNIERIE P S i D Wi : 1000k . 5o wman etal, 20064
—0.1 0.0 0.1 0.2 ~0.1 0.0 0.1 0.2
dx_i*/dx dx~/dx_i
= (& x, 0X) — = 0z,
0x 0x;

The averaging kernel describes how the true state changes the estimate at
a particular altitude, x,, whereas the impulse response describes how the
entire estimate changes to the true state a particular altitude, x..



~“Wheré is it? Resolution .. -~ -

Averaging kerne

|||||||||||||||||||||||||||||

2517 km |3

-----
-,

Bowman et al, 2002 ]

~6 km

The averaging kernel provides a SOFTT T |
means of defining the vertical ok A
resolution of the estimate, i.e., how =
well can the estimate (ozone) atone | < 3¢
altitude be distinguished from EIN
another? EH:

10 F
The resolution can be calculated from :
full-width half height. 0.1

A more robust, but more abstract definition of resolution is the degrees
of freedom for signal (dofs), which is the trace of the averaging kernel

matrix: dofs = Trace(A)

The dofs provides a measure of the independent information that can be
determined from an estimate. It can be calculated over subsets of the

atmospheric state




A R

The'what-and where of vertical résolution = = - -

The averaging kernel is a function of
the sensitivity, which includes spectral
resolution, precision, the inherent
variability of the atmospheric state.

Different instrument designs can
achieve resolution at different altitudes
by making trade-offs such as spectral
resolution and precision.

Sensitivity to ozone in the lower most
troposphere requires much higher
spectral resolution than the upper
troposphere.
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The total error can be split into two useful terms: S = NS, S TGt
smoothing and measurement error

S=(I-A)S,I-A)

Smoothing error

Smoothing error: error in the estimate
from the lack of resolution (as defined
by the averaging kernel).

Note that the smoothing erroris
dependent on the variability of the
state: CO2 will be different than O3.

Measurement error: error from random
noise.

' 1GS,GT

measurement error

03 N_MIDLAT
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TES oservations during the NOAA TEXAQS 2006 campaign

TES Madir Retrieval Result: Ozone, 2006—08—-23

http://tes.jpl. nasa .gOV/TeXAQS_ZO O6/brOW5e_run4911 . html Cross Section Along Orbit Track: RunlD=4%11, Seq=1-1, Scan=0-124, UTCtime=19:34:40—19:45:31
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TES Maodir Retrieval Result: CO, 2006—08-23
Cross Section Along Orbit Track: RunlD=4311, Ssq=1-1, Scan=0—124, UTCtime=18:34:40—18:45:31

TES retrievals of elevated ozone and
CO are seen near Houston on Aug 23",
2006.

How do we characterize this retrievals?

1 1
<50 75 100 125 150 175 >200
CO Valume Mixing Ratia (ppb}
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temperature and clouds.

Fressure {hPa}

The TES-retrieved cloud
optical depth is high off the
coast of Texas

but low directly on land.

The diagonal of the ozone
averaging kernel shows
high sensitivity in the lower
troposphere.
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At 680 hPa, the retrievals are influenced by the true atmosphere from near surface to
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Poleward of 40N, upper tropospheric O3 sensitivity at 215 hPa increases because of

decreasing tropopause height.

| N |
§ e et - o RN
o 40 50

2 an



[ ]
o

(T}
U
(0
.
Q
Q.
O
-
O

“~Observat

107F 1070 107

ozone mixing ratia

107

= 805, Scan = 2, Lat = —27.3730, Lon = 150.860, Elev (m)

2331, Seq

1BZ: Run

121073

v

oF

1

quu sinssaid

=l

2
S

-1 +HX_XG

2
S

ly-F(x,)

100 F

o 1080 1080 1100 1180

95

— 10107

8.0x107 "8
£.0x107°

=)
x
L=l
-+

|- s g /) pod

—F
—B

2.0x10

[=]

1960
107

X=X +A(Xx-x_)+Gn
|

150°W  120°W 90°W  60°W

180°

0° 30°E  60°E  90°E 120°E 150°E  180°

30°W

B0°W

150°W  120°W  90°W

-]
2




¥ = Conclusions/Future Directions =~ - -

e Atmospheric trace gas retrievals are built on 3 pillars:
— Forward Model (atmospheric radiative transfer)
— Inverse Model (optimal estimation)
— Characterization/Error Analysis (averaging kernels, dofs, etc.)

* Observation operators-—constructed from averaging
kernels—are powerful tools to compare remote sensing
estimates to other data, e.g., sondes, and to assimilation
systems

* Non-Gaussian, non-linear approaches, e.g., Markov Chain
Monte Carlo (MCMC), will become increasingly
important.
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UV: Provides NIR: Pcr:(())\I/lIJdrr?ﬁ AX
Cgﬁmﬁ: Information
information
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A atmospheric

AX emission

surface emission

DO/Multi-Spectral Remote Sensing
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UV and IR measurements provide complimentary sensitivity to
ozone. Worden et al, GRL, 2007 and Landgraff and Hasekamp,
JGR, 2007 showed the feasibility of estimating boundary layer
ozone. Fu et al, ACP, 2013 and Cuesta et al, ACP, 2013 have
demonstrated the potential for TES and IASI.
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e The TES optimal estimation retrieval algorithm was applied to the combination of AIRS and
OMI radiances to infer O3 and CO.

e Elevated CO and O3 in Pacific NW associated with biomass burning.

e DOFS show skill in separating upper and lower troposphere.

* DOFS and Cloud OD show the British Columbia obscured by clouds

e Elevated Texan LT ozone associated with agricultural burning and antrhopogenic emissions
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The Atmospheric Chemistry-Climate Model Intercomparison
Project (ACCMIP) estimated historic radiative forcing (RF)
and future response using consistent emissions for the IPCC

5th assessment. (Lamarque et al, 2013)
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In the tropics, discrepancies lead to
over 300 mWm?-2 for individual
models and up to 100 mWm-2 for
the ACCMIP ensemble.
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