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The first air quality regulation?

www.bbc.co.uk

King Edward | (1239-1307)

Monet, 1904

1273: Ordinance prohibited the use of coal In
London as being prejudicial to health

1306: Royal Proclamation forbade the use of (sea)
coal (Marsh, 1957)




Contemporary air gquality
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AQ models

Plume / Dispersion:

- describe transport and diffusion of pollutants

15.7pgm>
neWSb I OgS . Ch icag Otri bu n e . Com Fig. 19-5. Two cross sections through a Gaussian plume (total mass under curves conserved).
Boubel et al., 1994

- used to estimate pollution from point sources (Sutton et al.,
1932), in cities (Lettau, 1931) and even throughout the
globe (Machata, 1958)



AQ models — brief history

Persistence model: today’s AQ is going to be just like
yesterday’s

Statistical models (e.g., McCollister and Wilson, 1975):

 based on timeseries, temperature, insolation, wind...

 hard to make predictions beyond range of existing
data
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Fig. 2. Scatterplots of forecast vs observed daily maximum ozone concentrations for the summer of 1986 at station
T9 using: (a) D/S, (b) ARIMA (1,1,0), (c) TEMPER and (d) persistence models. Solid line indicates perfect
prediction while the dashed line is an ordinary least squares regression estimate,

(a) and (b)
Timeseries+stocha
stic

(c) including T

(d) persistence

Robeson and Steyn, 1990




AQ models

Photochemical air quality models / chemical transport
models (CTMs) developed =40 years ago (e.g.,
Friedlander and Seinfeld, 1969)

e 1st generation: simple chemistry at local scales

e 2nd generation: local, urban, regional addressing each
scale with a separate model and often focusing on a
single pollutant.

e 3rd generation: multiple pollutants simultaneously up to
continental scales and incorporate feedbacks between
chemical and meteorological components.

e 4th generation: extend linkages and process feedback
to include air, water, land, and biota to simulate the
transport and fate of chemical and nutrients throughout
an ecosystem.




AQ models

Current advances in AQ models:

- online / coupled simulations of chemistry and
meteorology (Baklanov et al., 2014)

- Large Eddy Simulations with chemistry (LES)
- ensembles / probabilistic

- self correcting / data assimilation (Bocquet et al.,
2015)




Air quality modeling for policy
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Roles of AQ models in policy

Setting standards
» developing concentration-response relationships
e exposure assessment / evaluating risk
 determining background / natural pollution levels
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USB = O; in the absence of anthropogenic emissions from the U.S.

NAB = Oj in the absence of anthropogenic emissions from the U.S., Canada and Mexico



Background O,

NAB O; from multi-model study (Lapina et al., 2014):

a) AM3 O; NAB b) AM3 O; NAB % contribution
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Background MDAS8 Oj:

- Correlated with MDA8 O3 (Zhang et al., 2011)

- Relative background amount fairly consistent across models (56-67% of total
daytime O3 across entire US).




Roles of AQ models in policy

Setting standards
» developing concentration-response relationships
e exposure assessment / evaluating risk
 determining background / natural pollution levels

AQ management

Development of control strategies (e.g., SIP)

Permitting

Determining exceptional events and long-range transport
Forecasting




Evaluating impacts of emissions regulations
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Figure 1. Estimated annual average PM,5 concentration (pg/m?) in the YRD domain in the base—case scenario.

Zhou et al., 2011



Evaluating impacts of emissions regulations

AEmissions ———| Air quality model [ — s AConcentrations




Evaluating impacts of emissions regulations

Table 1. CMAQ simulation scenarios targeting NO, and other pollutant emission reductions in different

sectors.

Scenario Sector Pollutants reduced Reduction
1 Power NO, alone (SCR alone) 85%

2 Power NO, + SO, (SCR + FGD) 85% for NO, + 90% for SO,
3 Mobile NO, alone 20%

4 Mobile VOC alone 20%

5 Mobile NO, + VOC + PM 20%

6 Mobile NO, + VOC + PM 50%

7 Industry NO, alone 20%

8 Industry VOC alone 20%

9 Industry NO, + VOC + PM 20%
10 Domestic NO, alone 20%

Ahhreviatinng: FGN fluidized nas dasulfurizatinn: SR <celartive ratalutie radictinn

Table 4. Mortality change estimates for control scenarios by sector and pollutant.

Emission reductions

Pollutant from base—case PM-related mortality
Scenario Sector controlled (1,000 tons/year) change per year
1 Power NO, 610 2,000 (200, 4,000)
2 Power SO, 1,300 12,000 (1,200, 24,000)
3 Mobile NO, 83 260 (26, 520)
4 Mobile VOC 200 380 (38, 750)
5 Mobile Primary PM 6 620 (62, 1,200)
7 Industry NO, 96 300 (30, 610)
8 Industry VOC 300 310(31, 610)
9 Industry Primary PM 110 12,000 (1,200, 24,000)
10 Domestic NO, 15 —21(-2,-42)

Zhou et al., 2011



Evaluating impacts of emissions regulations

AEmissions ———| Air quality model [ — s AConcentrations

4

Attain air quality goal?



Designing emissions strategies to meet a
particular attainment goal

Counties projected to exceed 1st (70 ppb) and 2" (13
ppm-hrs) NAAQS standards in Baseline 2020
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Designing emissions strategies to meet a
particular attainment goal

Counties projected to exceed 1st (70 ppb) and 2" (13
ppm-hrs) NAAQS standards in Projected 2020

A | —
Attains both standards (62400%13'35)

Exceeds 0.070 ppm NOT 13 ppm-hrs (41 t‘:&tjntle:i) =
- Exceeds 0.070 ppmand 13 ppm-hrs (24cgunt|es) \ | .
‘ Exceeds only 13 ppm-hrs (16 counties) e

US EPA, 2011



Exceptional events

Criteria To Be an Exceptional Event

« The event is not reasonably controllable or preventable

« The event is caused by human activity that is unlikely to recur
at that location or is a natural event

« There is a clear causal relationship between the event and the
monitored concentration

« The event is associated with a measured concentration in excess
of normal historical fluctuations

« There would have been no exceedance or violation but for the
event

Examples of Exceptional Events
 High Wind Dust Events
 Wildfire Events
 Volcanic and Seismic Activities




Exceptional events

FIGURE 1 — COLORADO COMMUNITIES AFFECTED BY THE OCTOBER 2003 EVENT
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Forecasting

http://airquality.weather.gov
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Roles of AQ models in policy

Setting standards
» developing concentration-response relationships
e exposure assessment / evaluating risk
 determining background / natural pollution levels

AQ management

Development of control strategies (e.g., SIP)

Permitting

Determining exceptional events and long-range transport
Forecasting

Assessment
 Reanalysis
e co-benefits




Assessment of air quality regulations

Impacts of CAA, 2020 - 1990
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Assessment of air quality regulations

Impacts of CAA, 2020 - 1990
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AQ output for policy applications

What output do air quality models generate that policy actually
uses?

AIR QUALITY GOALS

* Technical Feasibility
s Economic Issues
¢ Robustness

A
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Policy Assessment
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¢ Health and Welfare
e Secondary Impacts
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ign
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Russell, 1997



AQ output for policy applications

[Os], [PM; 5], [PP], [CO,],..



AQ output for policy applications:
O5; metrics

Primary:
- MDA8 = maximum daily 8-hr average
- JerrettO9 = maximum 6 month mean of daily 1-hr max

Secondary:
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O; gradients near the surface

Model “surface” of GEOS-Chem actually at —60m.
Values should be reduced at canopy height (2m).

M12 yearly average 2m O3 concentration / M12 yearly average surface O3 concentration (ppb)

0.5 0.6 0.7 0.8 0.9 1.0




differences across models and metrics

Estimated crop losses from Oj:

loss [%] loss [%0]

loss [%]

AOT40

AOT40

AOT40

Lapina et al., 2016

Wheat B 0.5° x 0.667° GEOS-Chem
(Lapina)
I 2.8° x 2.8° TOMCAT
(Hollaway et al., 2012)
M7/M12 W126
[[] 2.8° x 2.8° MOZART-2
Soy (Avnery et al., 2011)

Cross-metric
differences larger
M7/M12 W126 than cross-model
differences

Maize
Notes:
- Hollaway and Avnery for NA,
Lapina just for US

- Hollaway and Lapina bias

—— corrected
- All: adjust model estimates for

M7/M12 W126 canopy height




AQ output for policy applications: PM,

Many models (e.g., GEOS-Chem) don’t even report PM,
- requires assumptions about size that may not be rigorously treated
- for comparison to monitors, requires equilibration to monitor RH

yearly average surface wet PM25 concentration - yearly average surface dry PM25 concentration (ug/m3)

0.0 4.0 8.0 12.0 16.0 20.0

Data Min = 0.2, Max = 54.0



Evaluating impacts of emissions regulations

AEmissions ———| Air quality model |— s AAQ metric (DV)

4

Attain air quality goal?



Estimating future concentrations

Model estimates may be not be correct.

Use models in a relative fashion to minimize systematic model
bias.

EPA recommended approach:

DV, = Design Value upon which a standard is based at location i
(e.g., monitored 3 yr average of annual 4™ highest daily
maximum 8-hr O3)

RRF;, = Relative Response Factor from sensitivity modeling
(fractional change in simulated DV)

DV, (future) = DV, (baseline) x RRF,




Estimating future concentrations

CAMx simulations of O; W126 in 2025: 70 ppb primary

25 30 35 40 45 50

20 ppm-hrs

Attainment of a primary standard of 70 ppb would ensure
attainment of a secondary stand of 17 ppm-hrs

- secondary standard = primary standard
EPA, draft RIA, 2014



AQ output for policy applications: resolution

Previous works have investigated large-scale impacts:
- global reductions to fossil and biofuel (Jacobson, 2010)
- global BC and CH, measures (Anenberg et al., 2011; 2012)
- widespread adoption of vehicle standards (Shindell, 2011)

However, coarse models have trouble estimating exposure:
(a) population (b) 2° x 2.5° model PM, .

.

! — T
0 6 12 18 [pg/m?3]



Percent Difference

AQ output for policy applications: resolution

Previous works have investigated large-scale impacts:

- global reductions to fossil and biofuel (Jacobson, 2010)

- global BC and CH, measures (Anenberg et al., 2011; 2012)
- widespread adoption of vehicle standards (Shindell, 2011)

However, coarse models have trouble estimating PM, - exposure:

0
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—&-NH4NO3
ocC
——OTHR
-e-EC
——(NH4)2S04

CMAQ (Punger & West, 2013)

100

200 300 400 -35% -

Grid Resolution (km)

5% -

-5% -

\\\ -15% -

\ \ -25% -

GEOS-Chem (Li et al., 2015) BC

Grid Resolution (degrees)

Individual components of PM,, - underestimated by 5-40% in a 2°x2.5°

simulation over the US.

Impacts of resolution not globally heterogeneous.



AQ output for policy applications: resolution

Coarse models are better at estimating long-term O, exposure:

40000

'§ 35000

E 30000 # Scaled 12 km

§ CMAQ 36 km

8 25000 -

_,,3‘ .”QQQQOOQQQOOQQQQQOQOQ"’¢.”QQ.0

g 20000 -

[*]

= 15000

§ 10000 At some scale, uncertainty

8 5000 dominated by other factors

0 | | | (Thompson and Selin, 2012)

0 100 200 300 400

Grid Resolution (km)
CMAQ (Punger & West, 2013)

AQ models still have other difficulties related to exposure, e.g.:
- resolving response in high-NOx or low-NOx environments
- near roadway PM exposure
- iIndoor / outdoor exposure
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Source Apportionment (SA) vs
Source Receptor (SR)

Receptor
metric

Source attribution (SA)
e.g., zero-out, tagged

>
Source strength



Source Apportionment (SA) vs
Source Receptor (SR)

Receptor
metric

Implied SA

-
Ve

Gradient based (adjoint or DDM)

-
-

Source attribution (SA)
/Implied SR | €.9., zero-out, tagged

>
Source strength



Source Apportionment (SA) vs
Source Receptor (SR)

A
Receptor _ N
metric Gradient based (adjoint or DDM)
2/
A 7 |
Implied SA ] ,,,,,,,,, x/ Perturbation (e.g., 20%)
At
Implied SAY" /- Source attribution (SA)
L
”“Implied SR | €.9., zero-out, tagged
e v
>

Source strength



Source apportionment methods

Methods implemented in common US models:

Model Methods

CMAQ DDM HDDM Adjoint Tagging (TSSA)
CAMXx DDM HDDM Tagging (OSAT, APCA, PSAT, OPSA)
WRF-Chem Lagrangian (WRF-STILT) Tagging
GEOS-Chem | Tagging Adjoint
AM3 Tagging

Acronym Definition
DDM Decoupled Direct Method
HDDM High-order Decoupled Direct Method
TTSA Tagged Species Source Apportionment
OSAT Ozone Source Apportionment Tool
PSAT Particulate Source Apportionment Technology
APCA Anthropogenic Precursor Culpability Assessment
OPSA Online Particulate Source Apportionment
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		Adjoint
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		CAMx
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		Tagging

		 

		 

		 



		Acronym

		Definition



		DDM

		Decoupled Direct Method



		HDDM

		High-order Decoupled Direct Method



		TTSA

		Tagged Species Source Apportionment 



		OSAT

		Ozone Source Apportionment Tool



		PSAT

		Particulate Source Apportionment Technology



		APCA

		Anthropogenic Precursor Culpability Assessment



		OPSA

		Online Particulate Source Apportionment








Source apportionment uses for policy

http://preview.wiscwebcms.wisc.edu/aqast/source-apportionment-methods.htm

‘()_‘9
k. UNIVERSITY OF WISCONSIN - MADISON

Aaast Using Satellite Data for Air Quality Management

HOME ABOUT NEWS ARCHIVE NASA APPLIED SCIENCES AQAST.ORG

Source-apportionment methods
6-30-16 DRAFT ONLY do not cite or quote

An example of surface ozone attributed to the emissions from Maryland (left) and Ohio (right) at 2 p.m. on 7 July 2011
using CAMx v6.10.




Source apportionment uses for policy

What is the spatio-temporal distribution of pollution owing to a few
broadly defined or aggregated source sectors or species, such as all
transportation versus power plant emissions?

What is the origin of air pollution occurring in a particular location?
What would be the impact of implementing control strategies in a
different order, or the co-benefits of implementing them together

over each implemented in isolation?

What are the marginal pollution responses to changes in emission
(e.g., ppb per amount emitted)?

What is the complete breakdown of pollutant sources contributing
to total concentration levels?




Qzone(ppb)

Concerns for nonlinear systems

When biogenic VOCs react with anthropogenic NOX,
who Is to blame for the resulting ozone?

Consider example (Dan Goldberg) of O; in Maryland:

Diurnal Profile of Surface Ozone at Edgewood, MD on July 05, 2018
L L L

120 Diurnal Profile of Surface Ozone at Edgewood, MD on July 05, 2018
Aren 120 — T T[T T T T[T T T T [T T T T [ T T T T
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Concerns for nonlinear & discontinuous systems:
discontinuities

Consider metrics:

n

AOT40 = ) [C. —40]; for Cp_ > 0.04 ppm

1=1

“critical” value after 3 months = 3,000 ppb h
(Karenlampi and Skarby, 1996 )




Concerns for nonlinear & discontinuous systems:

discontinuities

Consider metrics:

n

AOT40 = ) [C. —40]; for Cp_ > 0.04 ppm

O [ppb]

40

A

1=1
Total

nthropogenic

Biogenic

S~

day



Concerns for nonlinear & discontinuous systems:
nonlinearities

n

CO =
W126 = 3 S 05
0 Z 1+ 4403 exp(—0.126 x Cy_ ) | = "

1=1

0.00 0.07 0.14
ppm

Consider 3 policies, that target 3 different sources,
each with equal impacts on O,.

What are their impacts on W126?
- Depends on the order in which you consider them

What are their contributions to W1267?
- Each may have relatively small contribution alone
- sum of source contributions # 100%



Concerns for nonlinear & discontinuous systems:
higher order sensitivity analysis (HDDM)

Contributions of NOx emissions to O; in Atlanta (Cohan et al., 2005)
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Atlanta NOX Combined Atlanta NOX by Category



Concerns for nonlinear & discontinuous systems:
response surface modeling

Wang et al.,
2011



Models are based on species, yet policies
are based on sectors

Radiative Forcing Terms Climate efficacy Spatial scale
L] ' L
|
| 1.0 \see Global | High
. I caption)
Long-lived |
greenhouse gases [
[ ~10- .
: 1.0-1.2 100 yrs Global High
[
| Halocarbons
. . Weeks to | Continental
Ozaone Stratospheric Tropospheric | 0.5-2.0 100 vrs Med
, yrs to global
Q (-0.05)
S| statoson | :
tratospheric water
g’ P ¢ CH | | ~1.0 10 years Global Low
2 vapour from CH, : |
[e)
E ! | 10 Local Med
= Surface albedo Land use Black carbon | - i ocal to €
<C - on snow 100 yrs | continental |- Low
[ |
[ | .
Direct effect I | 0.7 -1.1 Days Continental | Med
I | to global |- Low
Total : |
Aerosol ) i
Cloud albedo I | 10-20 Hours Continental Low
effect I | Days to global
[ |
) ) [ |
Linear contrails [ (0.01) | ~0.6 Hours | Continental | Low
[ |
3 Solar irradiance ' ! 0.7-1.0 ! Global | Low
[ ' [ 100 yrs
Z 1 l L L i L
-2 -1 0 1 2 Timescale Scientific
‘g : - understandin
Radiative Forcing (W m2) 9

Forster et al., 2007



Models are based on species, yet policies
are based on sectors

Abundance-based Emissions-based
1.69 1.60 Via Sulfate
Via Nitrate
Via Methane
B Via Tropospheric Ozone
[ viaco:
0.99 [0 Via Stratospheric Water

—
o

1.0

Instantaneous radiative forcing (W m-2)

0.5
0.25
|
0.0 —
-0.09
-0.29
05 0.25
@) R <~ o0 &
W &
O v

Shindell et al., 2009



ICIES

Models are based on species, yet pol
are based on sectors
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Models are based on species, yet policies
are based on sectors
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Speciated, country-specific contributions to global temperature
change from cookstove emissions abatement

Countries with large populations using solid fuels tend to have larger OC and GHG
iImpacts.
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Conclusions

e AQ models play an integral role in many stages of policy

e Thinking in advance about how AQ model results are to by
used can help you tailor model output to match the policy
need, for more effective transferal of information

e Many policy applications of models
- relative changes
- response of changes to emissions

e Care is warranted when considering source-receptor
relationships and attribution for nonlinear response metrics

e Policy needs us to consider co-emitted species from
controllable sectors.



Questions?
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Future vegetative O; exposure in Western US
following changes in emissions...

from SpeCIfIC countrles

(Lapina et al.,

GRL, 2015)
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Vegetative O, exposure in Western US following RCP

emissIions
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RCP 2.6: Domestic emission reductions drive attainment.

RCP 8.5: Background W126 O; overtakes domestic by 2020, driven
largely by global CH, emissions.

Lapina et al., 2015



Vegetative O, exposure in Western US following RCP

emissions
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Vegetative O, exposure in Western US following RCP

emissIions
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Source attribution of PM, c related global mortality

PM, = subgrid variability (0.1° x 0.1°) resolved using MODIS, MISR,
SeaWiFS AOD and CALIOP vertical profile (van Donkelaar et al., 2016):
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Source attribution of PM, c related global mortality

PM, = subgrid variability (0.1° x 0.1°) resolved using MODIS, MISR,
SeaWiFS AOD and CALIOP vertical profile (van Donkelaar et al., 2016):

(c) satellite-downscaled PM, .
e ;

(a) population (b) 2° x 2.5° model PM, .
) v o

0 10 10% 108[people] 0 6 12 18 [ug/m?3] 0 6 12 18 [ug/m3]

Combined high-resolution PM, . data and adjoint modeling affords
source attribution world-wide (Lee et al., 2015).



Adjoint results scaled for LEAP-IBC
such that total emissions *
coefficient gives back total O,
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Climate and Clean Air Coalition (CCAC)

CECAC

CLIMATE AND CLEAN AIR COALITION
TO BEDUCE SHORT-LIVED CLIMATE POLLUTANTS

Www.unep.org/ccac

- Initiated Feb 2012

- Bangladesh, Colombia, Ghana, Mexico, Sweden, US, and UNEP

- now 109 members (50 countries, European Commission, multiple NGOs).
- US involvement through the State Department and EPA.

- SLCP Task Force Bill introduced to Congress (May 20, 2013).

Objectives

Raising awareness of SLCP impacts and mitigation strategies
Enhancing and developing new national and regional actions
Promoting best practices and showcasing successful efforts
Improving scientific understanding of SLCP impacts & mitigation
strategies



Decision Support for Global Initiatives

Climate and Clean Air Coalition (UN)
- Reducing BC, CH, and other emissions from
vehicles, brick production, oil & gas, solid waste

Cross-cutting efforts: @ CAC

- Financing SLCP mitigation CLIMATE AND CLEAN AIR COALITION
- SLCP National Action Plans www.unep.org/ccac

First action: rapid emission and scenario assessment toolkit

‘a <)
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Emissions Impacts
o ‘\1 -gj,-"g‘:‘rv‘-\i\\; = health
o Ol o - climate
W el - ecosystem
e ju_ SR
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Use country-specific responses for arbitrary Aemissions from adjoint calculations



Air quality modeling:
chemical transport model

GEOS-Chem (Bey et al., 2001; Park et al., 2004)

a . ™
icci chemistry
emissions, G _
imi istributions
assimilated aero_sol thOelrmo_, i
meteorology, CO”VGCE)U?n, advection, i
initial c’s. turbulent mixing

Reactive convection-diffusion:

i 1 1

C; = mixing ration of species i fz = mass action of species i

U = wind Ez = emission of species |



Energy systems optimization with
MARKAL

MARket ALocations (Loulou et al., 2004)

e Selects the optimal mix of technologies and fuels at
each time step to minimize the net present value of
energy system capital and O&M costs

e Subject to: EPA 9-region
« Current and projected dfr:]l’tabalse2 _—
technology costs and efficiencies o oot} o ouomn

WEST MIDWEST

NORTHEAST

 Resource supply costs and
competition for fuel across
sectors

 Resource supply constraints

 Trade costs and constraints

« Emission limits (e.g., policies)




The Energy System

nd-Use Demands
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EPA Nine-Region MARKAL Database

Technology Detail: Light Duty Vehicles

Fuel Technology

Conventional ICE
Moderate ICE
Advanced ICE

Hybrid
Plugin-10
Plugin-40

E85 Conventional IC
E85 Moderate ICE
E85 Advanced ICE

Gasoline
Ethanol i .
£35 E85 Hybrid

\/b E85 Plugin-10
Electricity E85 Plugin-40

Diesel
Diesel Hybrid
CNG
Electricity
Hydrogen Fuel Cell

Class Demand
Mini
Compact
Airplanes
Full-size

Buses @
Light Duty

Minivan
Transportation
Heavy Dut
Pickup 4 J
Ships
Small SU _
Rail
Large SU

(ICE = Internal combustion engine)



US climate and AQ co-benefits

Incorporate “fees” on emissions into MARKAL
- criteria pollutant fees from Hidden Costs of Energy (NRC, 2010)
- CO2 fees from Social Cost of Carbon (SCC, 2013)

AQ and Climate fee-based co-benefits (Brown et al., 2013; in prep):

2045 NOX: (fees - BAU) /BAU 2045 CO,: (fees — BAU) /BAU
elec transp  combined elec ind transp combined
0% 0% T T
I - o 3 ‘
-20% -
-20% -
-40% - -30% -
[] AQ fees [l combo fees g, - [] AQ fees M combo fees
o B GHG fees o0 B GHG fees

-80% -

Air quality co-benefits of GHG policies are more
prominent.

Have you considered the air quality impacts of your
renewable energy source?



US climate and AQ co-benefits: GLIMPSE and MARKAL

AQ and RF diagnostics of emissions-cap scenarios (Akhtar et al., 2013):
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AQ and Climate fee-based co-benefits (Brown et al., 2013; in prep):
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Climate and health impacts of
Short Lived Climate Pollutants (SLCPs)

SLCPs = CH,, BC, OC, CO, VOCs, NO,, SO,, NH; (HFCs)
5 .

BAU

i Annually avoided
Mitig:CO2 premature
4r Mitig:SLCPs ] deaths
== Mitig:CO2+SLCPs
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Ramanathan and Xu, PNAS, 2010; UNEP 2011;
Hu et al., Nature CC, 2013 Shindell et al., Science, 2012
Ramanathan and Carmichael, Nature Geo, 2008



Climate and Clean Air Coalition (CCAC)

CECAC

CLIMATE AND CLEAN AIR COALITION
TO BEDUCE SHORT-LIVED CLIMATE POLLUTANTS

Www.unep.org/ccac

- Initiated Feb 2012

- Bangladesh, Colombia, Ghana, Mexico, Sweden, US, and UNEP

- now 61 members (39 countries, European Commission, multiple NGOs).
- US involvement through the State Department and EPA.

- SLCP Task Force Bill introduced to Congress (May 20, 2013).

Objectives

Raising awareness of SLCP impacts and mitigation strategies
Enhancing and developing new national and regional actions
Promoting best practices and showcasing successful efforts
Improving scientific understanding of SLCP impacts & mitigation
strategies




Integration of climate impacts into design of
air guality control strategies

Abundance-based RF Emissions-based AT

AF Terms AR4’ Forster et al. 4 2007 RF values (W m?) |Spatial scale| LOSU
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The traditional IPCC bar chart (abundance-based radiative forcing) has been
invaluable for atmospheric scientists...

...yet disconnected from the needs of policy makers, who need to know the
iImpacts of control strategies on co-emitted species.



Refining the bar chart: from abundance-based to
emissions-based RF

Perturbing emissions & recalculating RF:
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longitude (%)
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Optimal AQ control strategy design: past

Optimization Technique

Numerical nonlinear | 9|

Dynamic | s} e .

Nonlinear approx. | 7 |-

Multiobjective | 6

Integer program | s .
Linear program | 4} . -I- |
Graphical nonlinear | 3|
. . L
Cost effective index | 2} . . ®
L ]
None | 1 " H £ . o*
0 [ 1 ] 1 ] [ ] 1 1
0 1 2 3 4 5 6 7 8 9
Rollback Chemical Box model
tracer .
None Transport Empirical Transport and
Only photochemical reaction

Air quality modeling method

McRae and Cass (1981)



Optimal AQ control strategy design: present

Optimization Technique

Numerical nonlinear

Dynamic

Nonlinear approx.

Multiobjective

Integer program

Linear program

Graphical nonlinear

Cost effective index

None
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Air quality modeling method

Mesbah and Hakami (2011)



Optimal AQ control strategy design: future

Optimization Technique

Numerical nonlinear

Dynamic

Nonlinear approx.

Multiobjective

Integer program

Linear program

Graphical nonlinear

Cost effective index

None
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Air quality modeling method

Mesbah and Hakami (2011)



Integration of multiple damages for multi-
objective optimization using adjoint modeling

Informing energy modeling Climate impacts of SO,
GLIMPSEv1.0

~ 4 Impact of AQ Fees on Regional Emissions ;
o Sulfate
o Fees West B Fees East - ; ‘ Radiative Forcing
5}

£ ) = mWm 2 Tg !
o g

& B o
o0

[}

S

(WY

3 0.5
= No Fees West B No Fees East
Lo .] .T lvI

2010 2015 2035 2055
Brown et al., ES&T, 2013

Additional impacts being explored with adjoint modeling:

- reactive nitrogen deposition (Paulot et al., ES&T, 2013)
- vegetative exposure to ozone (Lapina et al., 2014)
- cloud condensation nucleii (Karydis et al., GRL, 2012)

o

Akhtar et al., ES&T, 2013

Iteratively minimize cost function analogous to 4D-VAR:

min J(x) = > di(M(x)) + (x = xa)" Cx(x — )

© damages abatement costs



Source attribution of PM, - related mortality

Source contributions to national mortality from PM,, ¢
- total estimated to be 117,000 / yr

compare to 130,000 / yr from Fann et al. (2012)
- contributions by location / sector / species:

From fossil fuel SO, (25,638) From fossil fuel NO, (19,816)

T

g

[ : . .
[deaths] [deaths]
note: preliminary analysis, complete annual average results in progress

Analysis valuable for determining health impacts of future
emissions control strategies, particularly jointly addressing PM, ¢ and Og4



Environmental impacts of NH,

Estimated N deposition from NH,, Dentener et al. (2006)
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Areas where color approaches dark red --> deposited levels
are hazardous to ecosystem.

NH; emissions:
- increased by factor of 2 — 5 since preindustrial era.
- to double by 2050 (IPCC, Denman et al., 2007; Moss et al., 2010).
- contribute to 46 Tg gap in global N budget (Schlesinger, 2009)?



Concerns for nonlinear systems
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Concerns for nonlinear systems

A

Receptor _ N
metric Gradient based (adjoint or DDM)

Implied SA

-
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Source attribution (SA)
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Source strength



Concerns for nonlinear systems

A
Receptor _ N
metric Gradient based (adjoint or DDM)

2/

A 7 |
Implied SA ] ,,,,,,,,, ,/ Perturbation (HTAP)

At
Implied SAY}-" /.~ Source attribution (SA)

- ’Implied SR | e.9., zero-out, tagged

e v
>

Source strength

HTAP: we have multiple models capable of each



Variability across SA approaches
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Variability across approaches depends upon response metric



Concerns for nonlinear systems:
cross sensitivities by region and city area

W126_US sensit to NOx
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Constraining aerosol sources
with 4D-Var approach

Model (GEOS-Chem, www.geos-chem.org) predicts 4D distributions:

meteorology &
emissions: SO,
NO,, NH;
dust, BC, OC

Gas-phase chemistry
Heterogeneous chem
Aerosol thermo

Deposition

- )

NH; HNO,,
S0,2, NO,",
NH,*
dust, BC, OC

4D-Var approach: constrain emissions through inverse modeling
- uses adjoint of GEOS-Chem (Henze et al., 2007)

- assimilates observations (from satellites)

- adjusts emissions (Xx) at the grid-scale to minimize J:

X .
7

model error

min 7 (x) = > (M(x) - y:)"S; ' (M(x) —yi) + (x —x*) "8} (x — x*)
a priori constraint

X = emissions, M = model, y = observations, S, S, = error covariances




Model sensitivity relationships

—————————————————————————————————————————————————————————————————————————————————————

C;, PDs Ciy Py Ci, Di Ci, Di Ci, Di
Ciy Ds Ci, Di Ciy Pi Ciy Pi Ci, Di
Ciy Ds Ci, Di Ciy Pi Ci, Di Ciy Pi
- Ocy
] o Op1
Ideally, want model Jacobian, Y€ _ :
O
- Op1

but it iIs generally much too large to calculate.




Forward sensitivity
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Adjoint sensitivity
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Air pollution and visibility: urban scale

Pasadena, CA

(photo courtesy of M. Kleeman)

~3 Million premature deaths per year globally (GBD, 2012)



Air pollution and visibility: regional scale

SeaWiFS, May 4, 2001

Transcontinental health impacts (HTAP, 2010)
Aerosols interact with visible light.
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