An Overview of Mobile Source Emissions and their Impacts on Air Quality and Climate

Brian McDonald, Ph.D.

Cooperative Institute for Research in Environmental Sciences, CU-Boulder Chemical Sciences Division, NOAA Earth System Research Laboratory

Timeline of the Volkswagen Scandal

May 2014

CARB and WVU researchers find VW diesels emit up to 40x more NO_x than the standard

Sep. 18, 2015

VW scandal breaks to public, ordered to recall **482,000** vehicles in U.S.

Oct. 15, 2015

VW to recall **8.5M** diesel cars across European Union

June 28, 2016

VW reaches U.S. settlement of **\$14.7B**: \$12,500 to \$44,000 to repurchase cars \$5,100 to \$10,000 to fix cars \$2.7B for environmental cleanup \$2.0B for zero-emission vehicles

Exhaust system of a Volkswagen Golf Volkswagen has used two basic types of technology

Illustration by Guilbert Gates | Source: Volkswagen, The International Council on Clean Transportation

Sources: theGuardian (12/10/15), CNN (6/28/16), NYT (7/19/16)

Council on Clean Transportation.

European Trends in Passenger Vehicle NO_x Emission Factors

U.S. Trends in Diesel Vehicle NO_x Emission Factors

Case Study on Managing Air Quality and Climate Change

Are gasoline or diesel vehicles better for the environment?

Automobiles mostly gasoline-powered

Emission control technologies more robust (e.g., three-way catalytic converters)

Automobiles ~50% diesel (varies by country)

Improved fuel efficiency by ~30%

Overview of Lecture

- (1) What are mobile sources and what do the emit?
- (2) What is the impact of nitrogen oxide (NO_x) emissions on ozone (O_3) ?
- (3) How do gasoline and diesel engines impact aerosol concentrations?
- (4) What is the pathway forward for sustainable transportation systems?

~600 coal-fired power plants ~1700 natural-gas plants

Challenge to estimate emissions

- Scale and mobility
- Not continuously monitored
- Vehicles evolving

~50%

Nitrogen

Oxides

-70%

~230 million cars + ~3 million freight trucks

~50%

Black

Carbon

In US...

Key Features of Gasoline and Diesel Engines

Gasoline Engine

Spark ignition

(octane: rated to avoid premature ignition)

Fuel comprised of aromatics, branched-alkanes

Stoichiometric combustion, air-fuel **pre-mixed**

Pollutants of concern: **CO, VOCs, NO_x**

Diesel Engine

Compression ignition

(cetane: rated for ease of ignition)

Fuel comprised of **long-chain n-alkanes**

Fuel lean combustion, air-fuel **not pre-mixed**

Pollutants of concern: NO_x, PM, aldehydes

Common Vehicle Emission Control Technologies

Gasoline Engine

Three-way catalytic converters

Oxidation of CO, VOCs \rightarrow CO₂ Reduction of NO_x \rightarrow N₂

Diesel Engine

Selective catalytic reduction systems

Reduction of $NO_x \rightarrow N_2$ using urea

or NO_x lean trap NO_x removed by adsorption, requires regeneration

Diesel oxidation catalyst

Oxidation of CO, VOCs \rightarrow CO₂

Exhaust gas recirculation (EGR)

Lowers NO_x emissions

Positive crankcase ventilation

Control evaporative VOC emissions

Exhaust gas recirculation (EGR)

Lowers NO_x emissions

Diesel particle filters

Traps PM, requires regeneration

Super-Emitting Vehicles Account for Largest Share of Emissions

Many studies have identified problems with vehicle emission models

Singer and Harley, AE 2000; Parrish et al., AE 2006; Lindhjem et al., JAWMA 2012; McDonald et al., JGR 2012; Anderson et al., AE 2014

Issues include:

- Changing methodologies
- Wrong emission trends and magnitudes
- Incorrect VOC speciation

Figure from Parrish *Atm. Env.* 2006, "Critical evaluation of U.S. on-road vehicle emission inventories."

Also Discrepancies with a Global Emissions Inventory

Hassler et al. (submitted *Geophys. Res. Let.*)

Building a Fuel-Based Vehicle Emissions Inventory

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

Quantify on-road CO₂ emissions

- State-level taxable gasoline and diesel fuel sales reports
- Public and annual

Map on-road CO₂ emissions

- Using traffic count data
- Basis for scaling co-emitted combustion byproducts

Use of Roadway Studies for Emission Factors

Emissions = Activity (kg fuel) **x Emission Factor** (g/kg fuel)

Roadside monitoring data

- Measures in-use vehicles
- Captures high-emitters
- Regulatory models typically rely on chassis dynamometer tests

CO, HC and NO Remote Sensing

Figure from Univ. of Denver FEAT System

Long-Term Trends in U.S. On-Road NO_x Emission Factors

Comparison with Current EPA Vehicle Emissions Model (MOVES)

Figure updated from McDonald et al. (*J. Geophys. Res.* 2012)

Test of New NO_x Inventory against Aircraft Data (Los Angeles)

Simulated for California Nexus Study (CalNex) in 2010

 LA good test case of transportation emissions (~2/3 of NO_x budget)

Kim et al. (*J. Geophys. Res.* 2016)

Strong Agreement between Model and Aircraft Observations

Kim et al. (J. Geophys. Res. 2016)

Difference in Total U.S. NO_x Emissions (Fuel-Based – EPA)

Model vs. Southeast Nexus Study Aircraft Observations (18 flights)

Comparisons windowed to boundary layer (200-700 m) and daytime (10 AM-6 PM CDT)

McDonald et al. (*in preparation*)

Large Biases in Ozone Models for the Eastern US

Simulation during Southeast Nexus Study (2013)

- Base case modeled using U.S. EPA's National Emissions Inventory 2011
- Includes biogenic emissions (BEIS v3.14)
- Model results evaluated with air quality monitoring station data

McDonald et al. (in preparation)

Significant Change in Ozone when Modeling Fuel-Based Inventory

McDonald et al. (*in preparation*)

Health Professionals across the Nation Urge EPA to Finalize Most Protective Ozone Air Quality Standard

"According to EPA, a standard of 60 ppb would prevent up to 7,900 premature deaths and 1.8 million childhood asthma attacks in 2015 alone."

"Coloradans want and deserve clean air...while growing Colorado's economy. At the same time, the EPA must recognize the unique challenges...to the Rocky Mountain West."

-Governor John Hickenlooper

Lawsuits pending by business and manufacturing groups, nine states, and environmental organizations.

Why Industry Groups are Unhappy

Why Environmental Groups are Unhappy

Summary of NO_x Emissions from Mobile Sources

\succ On-road engines still an important source of NO_x emissions

• Account for $\sim 2/3$ of NO_x emissions in Los Angeles and $\sim 1/3$ of U.S. emissions

> U.S. EPA tends to overestimate mobile source NO_x emissions

- ...even though NO_x emissions are higher than expected from VW diesels
- Impacts models of tropospheric O₃, especially over the Southeastern U.S.

Emissions are a key input to atmospheric models, incumbent on the modeler to understand potential gaps in inventories used.

Trends in Diesel Fuel Use (California)

Trends in Diesel Engine PM Emission Factors

Trends in Mobile Source BC Emissions (California)

Consistency in Emissions and Ambient BC Trend

Composition of Mobile Source BC Shifted

Organic Aerosol a Major Fraction of Fine PM Around the World

Jimenez et al. (*Science* 2009)

Gasoline vs. Diesel Contribution to Organic Aerosol

Which mobile source sector dominates formation of SOA?

Los Angeles 2010

Figure from Hayes et al. (J. Geophys. Res. 2013)

> Bahreini et al. (GRL 2012)

Concluded that gasoline emissions dominated anthropogenic SOA in LA

Gentner et al. (PNAS 2012)

Concluded that diesel emissions dominated anthropogenic SOA in LA

Platt et al. (*Nat Comm* 2014)

Found two-stroke scooters dominated mobile source SOA in many cities globally

Large Off-Road Engine Emission Factors

As of 2010

Emission factors from McDonald et al. (Environ. Sci. & Technol. 2015)

Trends in SOA Yields by Mobile Source Engine Type

Factors that affect SOA yields

(1) Ambient OA mass loadings

(2) Exhaust VOC profiles (Gasoline vs. Diesel)

(3) Reformulated gasoline

(4) Higher aerosol yields in LEV-I and LEV-II vehicles

See McDonald et al. (Environ. Sci. & Technol. 2015) for more details.

Trend in Mobile Source OA (Los Angeles)

Adding Off-Road Engines Slow Emission Decreases

Consistency in Emissions and Ambient OA Trends

McDonald et al. (Environ. Sci. & Technol. 2015)

Summary of PM Emissions from Mobile Sources

Similar decreases in mobile source emissions and ambient trends of carbonaceous aerosols

• Suggests historical importance of mobile sources to urban concentrations of BC and OA

Growing relative contribution from non-vehicular sources

- Off-road engines now account for 40-50% of mobile source emissions of BC and OA in U.S.
- Other VOC and POA sources (e.g. cooking, fires, solvents, etc.) likely important as well

Transportation is an important contributor to urban aerosol, but they are not the only emissions source of concern.

Case Study on Managing Air Quality and Climate Change

Are gasoline or diesel vehicles better for the environment?

Automobiles mostly gasoline-powered

Emission control technologies more robust (e.g., three-way catalytic converters)

Automobiles ~50% diesel (varies by country)

Improved fuel efficiency by ~30%

Slower Decrease in Ambient NO_x in European Cities

Congestion Pricing can also Lead to More Diesel Vehicles

£11.50 daily charge on weekdays between 7 AM and 6 PM

Annual NO₂ Concentrations across Europe

Many European cities violate ambient NO₂ standard (in red)

Source: European Environment Agency

What about the Impact of Diesel Emissions on Aerosols?

Near-Roadway Exposure to Primary Diesel Emissions

SOA Formation Potential

Joe et al. (*Atm. Env. 2014*)

Gentner et al. (PNAS 2014)

What is the Role of Electric Vehicles in Climate Mitigation?

Williams et al. (Science 2014), The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: the Pivotal Role of Electricity

Cities account for ~70% of global fossil fuel CO_2 emissions Clean transportation key to mitigating poor air quality and climate change

Background CO₂ emissions map from NASA JPL, Megacities Carbon Project

Acknowledgments

NOAA Chemical Sciences Division

(Regional Chemical Modeling, Tropospheric Chemistry, Chemistry & Climate Processes) Si-Wan Kim, Stuart McKeen, Ravan Ahmadov, Yuyan Cui, Greg Frost, Michael Trainer, Joost de Gouw, Birgit Hassler

University of Denver

Gary Bishop and Don Stedman

UC-Berkeley

Rob Harley and Allen Goldstein

University of York

David Carslaw

Key Takeaways

> Mobile sources still contribute to urban air quality problems

- Policy-relevant impacts on tropospheric O₃
- Primary and secondary emissions of fine particles
- U.S. successful at controlling criteria air pollutants, but not CO₂
- Contrasting air quality trends with Europe

> What is the pathway forward for sustainable transportation systems?

- Gasoline vs. diesel vs. electric vehicles?
- Answer highly intertwined with energy infrastructure
- May vary by different regions of the world

A holistic view is required that considers both air quality and climate change.