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Timeline of the Volkswagen Scandal

May 2014
CARB and WVU researchers find VW diesels ot syt of  Vokewanen G
em|t Up tO 4OX more NOX than the Standard Volkswagen has used two basic types of technology

to reduce emissions of nitrogen oxides from diesel
engines, by either trapping the pollutants or treating
them with urea. The first type is shown here.

Sep. 18, 2015
VW scandal breaks to public, ordered to recall Engine control module
482,000 vehicles in U.S. e comenes i ST ey

[ H2S5 catalytic
converter

Oct. 15, 2015 |
VW to recall 8.5M diesel cars across Qisel partcultefter_—* A
European Union sensors

Exhaust valve

Nitrogen oxide trap

This system traps nitrogen oxides, reducing toxic
emissions. But the engine must regularly use more
fuel to allow the trap to work. The car's computer

\] U n e 28, 2016 could save fuel by allowing more .pollutan.ts to pass
VW reaches U.S. settlement of $14.7B: Dot roson ot Volcwgots sowaes oo

have been altered to make cars pollute more,

$12,5OO tO $44,000 tO I‘epurChase cars accord_ingto researchers at the International
$5,100 to $10,000 to fix cars poeton feaamsperton

$2.7B for environmental cleanup
$2.0B for zero-emission vehicles

Sources: theGuardian (12/10/15), CNN (6/28/16), NYT (7/19/16)



European Trends in Passenger Vehicle NO, Emission Factors
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U.S. Trends Iin Diesel Vehicle NO, Emission Factors
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Case Study on Managing Air Quality and Climate Change

Automobiles mostly gasoline-powered Automobiles ~50% diesel (varies by country)

Emission control technologies more robust Improved fuel efficiency by ~30%
(e.g., three-way catalytic converters)




Overview of Lecture

(1) What are mobile sources and what do the emit?
(2) What is the impact of nitrogen oxide (NO,) emissions on ozone (O,)?
(3) How do gasoline and diesel engines impact aerosol concentrations?

(4) What is the pathway forward for sustainable transportation systems?



In US... Rl

Nitrogen

Oxides

Mobile Sources are
a major source of
GHGs and air toxics

~230 million cars +
~3 million freight trucks

~600 coal-fired power plants
~1700 natural-gas plants

Challenge to
estimate emissions

» Scale and mobility
» Not continuously monitored
» Vehicles evolving



Key Features of Gasoline and Diesel Engines

Gasoline Engine Diesel Engine
Spark ignition Compression ignition
(octane: rated to avoid premature ignition) (cetane: rated for ease of ignition)
Fuel comprised of Fuel comprised of
aromatics, branched-alkanes long-chain n-alkanes
Stoichiometric combustion, Fuel lean combustion,
air-fuel pre-mixed air-fuel not pre-mixed
Pollutants of concern: Pollutants of concern:

CO, VOCs, NO, NO,, PM, aldehydes



Common Vehicle Emission Control Technologies

Gasoline Engine Diesel Engine
Three-way catalytic converters Selective catalytic reduction systems
Oxidation of CO, VOCs — CO, Reduction of NO, — N, using urea

Reduction of NO, — N,
or NO, lean trap

NO, removed by adsorption,
requires regeneration

Diesel oxidation catalyst
Oxidation of CO, VOCs — CO,

Exhaust gas recirculation (EGR) Exhaust gas recirculation (EGR)
Lowers NO, emissions Lowers NO, emissions
Positive crankcase ventilation Diesel particle filters

Control evaporative VOC emissions Traps PM, requires regeneration



Super-Emitting Vehicles Account for Largest Share of Emissions
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Long History of Inaccurate Transportation Emission Inventories
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Many studies have identified problems

with vehicle emission models 10 7
= Singer and Harley, AE 2000; Parrish et al., AE : I |
2006; Lindhjem et al., JAWMA 2012; McDonald 8 I~ Jdesoz 7
et al., JGR 2012; Anderson et al., AE 2014 - Mﬂﬁ&-\. 1

Issues include:

NO, emissions (Tg yr')
(@)
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= Changing methodologies —l- 2004 Trends Tables

= Wrong emission trends and magnitudes I —O— Inferred Emissions ]

* Incorrect VOC speciation 2 - -
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Figure from Parrish Atm. Env. 2006, “Critical evaluation of
U.S. on-road vehicle emission inventories.”



Also Discrepancies with a Global Emissions Inventory
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Building a Fuel-Based Vehicle Emissions Inventory

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)
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Use of Roadway Studies for Emission Factors

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

Roadside monitoring data CO, HC and NO Remote Sensing
= Measures in-use vehicles
= Captures high-emitters

= Regulatory models typically rely on
chassis dynamometer tests

Figure from Univ. of Denver FEAT System



Long-Term Trends in U.S. On-Road NO, Emission Factors
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Year Figure updated from McDonald et al. (J. Geophys. Res. 2012)



Comparison with Current EPA Vehicle Emissions Model (MOVES)
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Test of New NO, Inventory against Aircraft Data (Los Angeles)

WRF-Chem Model

Simulated for California Nexus Study
(CalNex) in 2010

= LA good test case of transportation emissions
(~2/3 of NO, budget)

NO, (ppb) [T 1

0 2 4 6 8 10 12 14

Kim et al. (J. Geophys. Res. 2016)



Strong Agreement between Model and Aircraft Observations

WRE-Chem Model NOAA P-3 Aircraft

NO, (ppb) T o NO, (ppb) [T —
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Kim et al. (J. Geophys. Res. 2016)



Difference in Total U.S. NO, Emissions (Fuel-Based — EPA)

2013: AUrban NO, ~-20% ARural NO, ~ -10%

Emissions

I <-10.0td
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I <1.0td
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[ ]
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Model vs. Southeast Nexus Study Aircraft Observations (18 flights)

Comparisons windowed to boundary layer (200-700 m) and daytime (10 AM-6 PM CDT)
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Large Biases in Ozone Models for the Eastern US

Simulation during Southeast Nexus
Study (2013)

= Base case modeled using U.S. EPA’s
National Emissions Inventory 2011

* Includes biogenic emissions (BEIS v3.14)

= Model results evaluated with air quality
monitoring station data

- Mean bias of daily 8-hr max L5
I
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McDonald et al. (in preparation)



Significant Change in Ozone when Modeling Fuel-Based Inventory

May indicate importance of other
sources of NO, emissions

e.g. oll & gas, agriculture

1~ Overall improvement in
ozone prediction

i Gray dots within 5 ppb ] 3
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McDonald et al. (in preparation)



U.S. 8-hr Ozone Standard Recently Lowered from 75 to 70 ppb (2015)

Health Professionals across the Nation Urge EPA to
Finalize Most Protective Ozone Air Quality Standard

“According to EPA, a standard of 60 ppb would
prevent up to 7,900 premature deaths and 1.8
million childhood asthma attacks in 2015 alone.”

AMERICAN
Py SOURCE: Politico, 11/25/14
ASSOCIATION. SOURCE: Politco, 11/25

M Mahufééturéré

“Coloradans want and deserve clean air...while growing Colorado’s economy. At the same time,
the EPA must recognize the unique challenges...to the Rocky Mountain West.”

-Governor John Hickenlooper




Why Industry Groups are Unhappy

I Nonattainment (75 pbb)
I Nonattainment (70 ppb)




Why Environmental Groups are Unhappy

I Nonattainment (70 ppb)
Nonattainment (60 ppb)




Summary of NO, Emissions from Mobile Sources

» On-road engines still an important source of NO, emissions
e Account for ~2/3 of NO, emissions in Los Angeles and ~1/3 of U.S. emissions

» U.S. EPA tends to overestimate mobile source NO, emissions
e ...even though NO, emissions are higher than expected from VW diesels
« Impacts models of tropospheric O, especially over the Southeastern U.S.




Trends in Diesel Fuel Use (California)
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Trends in Diesel Engine PM Emission Factors
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Trends in Mobile Source BC Emissions (California)

257 San Francisco Bay Area -8
20
‘T,-..\ -6 P
o =
= =2
» 15— ®
£ =
— -4 @0
)
o o
€ 10- T
w «Q
QO All = .
S -1 Sources
On-Road
Diesel
0 | | | | | | 0
1960 1970 1980 1990 2000 2010

Year
McDonald et al. (Environ. Sci. & Technol. 2015)



Consistency in Emissions and Ambient BC Trend
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Composition of Mobile Source BC Shifted

25 San Francisco Bay Area -8
20 —

‘Ta--. [ 6 >
g o] =
= =2
o 15— T @
5 M :
= \ -4 W
0 1T O
9 4 g
e 10+ 1 g =
1 . } &

3
2 Off-Road |, To

5 - Diesel

On-Road

Gasoline

On-Road
0, Diesel 0

1960 1970 1980 1990 2000 2010

Year
McDonald et al. (Environ. Sci. & Technol. 2015)



Organic Aerosol a Major Fraction of Fine PM Around the World
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Gasoline vs. Diesel Contribution to Organic Aerosol

Los Angeles 2010
LOA > Bahreini et al. (GRL 2012)

5(1)% , — :
() Concluded that gasoline emissions dominated

anthropogenic SOAIn LA

HOA
12(1)%

» Gentner et al. (PNAS 2012)
Concluded that diesel emissions dominated
anthropogenic SOAIn LA

> Platt et al. (Nat Comm 2014)
Found two-stroke scooters dominated mobile
source SOA in many cities globally

Figure from Hayes et al. (J. Geophys. Res. 2013)



Large Off-Road Engine Emission Factors

As of 2010
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Trends in SOA Yields by Mobile Source Engine Type

Factors that affect SOA vields

(1) Ambient OA mass loadings

(2) Exhaust VOC profiles
(Gasoline vs. Diesel)

(3) Reformulated gasoline

(4) Higher aerosol yields in
LEV-1 and LEV-II vehicles

SOA Mass Yield

(g SOA g~ VOC)

0.30
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0-00 | | | | |
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See McDonald et al. (Environ. Sci. & Technol. 2015) for more details.



Trend in Mobile Source OA (Los Angeles)
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Adding Off-Road Engines Slow Emission Decreases
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Consistency in Emissions and Ambient OA Trends
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Summary of PM Emissions from Mobile Sources

> Similar decreases in mobile source emissions and ambient trends of
carbonaceous aerosols
* Suggests historical importance of mobile sources to urban concentrations of BC and OA

» Growing relative contribution from non-vehicular sources
» Off-road engines now account for 40-50% of mobile source emissions of BC and OAin U.S.
« Other VOC and POA sources (e.g. cooking, fires, solvents, etc.) likely important as well




Case Study on Managing Air Quality and Climate Change

Automobiles mostly gasoline-powered Automobiles ~50% diesel (varies by country)

Emission control technologies more robust Improved fuel efficiency by ~30%
(e.g., three-way catalytic converters)




Slower Decrease in Ambient NO, in European Cities
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Congestion Pricing can also Lead to More Diesel Vehicles
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Annual NO, Concentrations across Europe
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What about the Impact of Diesel Emissions on Aerosols?

Near-Roadway Exposure to
Primary Diesel Emissions

Port of Oakland, CA
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What Is the Role of Electric Vehicles in Climate Mitigation?
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Cities account for ~70% of global fossil fuel CO, emissions
Clean transportation key to mitigating poor air quality and climate change

“Beijing issues red alert over air pollution
s il v . for the first time” NY Times (12/7/15)
“To fight the world's worst air pollutrofi: 3
New Delhiforces gars offy

——

“Los Angeles and Bakersfield.top
- airgpeliution.in.the nation” AP (4/20/16)

Sl |
. - i o

o i
= e
-

..IE.
|
i |
B, R _ i
='.1-:!-“WS"P,&1'TS" smog wdrfens_,- rar |
b, Ll 1 ., b rl] e & I
~_driving restrictions, makes public: . 1
e :'#h"'x Huffingtor‘%o' 3/16/14 by i \ |
o l," L ,..-d'.“ - I
1 f, Y e i l
|
i
-I :
W1
“Mexico City chokes on its congestion ‘lp
problem” TheyGuardian (7/6/16) '-;t
% ; AL
L o : :!5_

e R B N B N R N _N_JN_§_ ------;-ﬂ'

“There is no escape: Nairobi’s air
pollution sparks Africa health warning”
The Guardian (7/10/16)

“...the air in Rio de Janeiro is not up to
- WHO standards” CBS Sports (8/1/16)

Background CO, emissions map from NASA JPL, Megacities Carbon Project
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» Mobile sources still contribute to urban air quality problems
e Policy-relevant impacts on tropospheric O,
 Primary and secondary emissions of fine particles
 U.S. successful at controlling criteria air pollutants, but not CO,
o Contrasting air quality trends with Europe

» What is the pathway forward for sustainable transportation systems?
« (Gasoline vs. diesel vs. electric vehicles?
 Answer highly intertwined with energy infrastructure
 May vary by different regions of the world
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