Advances in Assimilation of Atmospheric Composition Observations

Arthur P. Mizzi (mizzi@ucar.edu)

NCAR/ASP Summer Colloquium August 2, 2016

NCAR/ASP Summer Colloquium 2016

Overview

- Background Air quality issues and response
- > Operational air quality forecasting
- > ACOM air quality forecasting research
- WRF-Chem/DART quasi-real-time system
- ➢ Recent accomplishments:
 - Assimilation of CPSRs (retrieval full and partial profiles)
 - Constrained emissions
 - Joint assimilation of MOPITT and IASI CO CPSRs
 - Assimilation of MOPITT AOD
 - Quasi-realtime cycling applied to FRAPPE

Background: Air Quality Issues and Response

NCAR/ASP Summer Colloquium 2016

Health Impacts of Poor Air Quality

Air pollution remains a major danger to the health of children and adults.

NCAR/ASP Summer Colloquium 2016

What's the Cost of Poor Air Qualityin the United States?

~\$71 billion to ~\$277 billion annually (0.7 – 2.8% of GDP)

Pollutant	Mortality	Morbidity	Agriculture	Timber	Visibility	Materials	Recreation	Total
PM ₂₅	14.4	2.6	0	0	0.4	0	0	17.4
PM_{10}^{1}	0	7.8	0	0	1.3	0	0	9.1
NOx	4.4	0.8	0.7	0.05	0.2	0	0.03	6.2
NH ₃	8.3	1.5	0	0	0.2	0	0	10.0
SO ₂	16.1	2.9	0	0	0.4	0.1	0	19.5
VOC	9.6	1.8	0.5	0.03	0.2	0	0	12.1

¹PM₁₀ represents coarse particles between 2.5 and 10 microns throughout the paper.

Muller and Mendelsohn: J. Environ. Econ. Manage. 54 (2007) 1-14.

NCAR/ASP Summer Colloquium 2016

What's Being Done to Address Poor Air Quality?

- US Clean Air Act: Passed in 1970, with major revisions in 1977 and 1990.
- \triangleright Requires regulation of PM, O₃, SO₂, NO₂, CO, and Pb.
- Requires reduced emissions from motor vehicles and from new or expanded industrial plants.
- Provides authority to address emerging air pollution problems e.g., greenhouse gasses and climate change.
- > 2014 Utility Air Regulatory Group v. EPA
- > 2016 Chamber of Commerce, et al. v. EPA

Has Air Quality Regulation Been Successful?

NCAR/ASP Summer Colloquium 2016

Is this really Denver?

July 2015 – Denver Post

NCAR/ASP Summer Colloquium 2016

Operational Air Quality Forecasting

NCAR/ASP Summer Colloquium 2016

Western Europe: MACC/Copernicus

NCAR/ASP Summer Colloquium 2016

United States: NAM-CMAQ/HYSPLIT

Air Quality Forecasting in the US

http://airguality.weather.gov/ Exposure to fine particulate matter and ozone pollution leads to premature deaths of more than 50,000 annually in the US (Science, 2005; recently updated to 100,000 deaths; Fann, 2011, Risk Analysis) ozone Air quality forecasting in the US relies on a partnership among NOAA, EPA, state and local agencies NOAA develop & evaluate NOAA air quality forecasting team includes models; provide NWS, OAR and NESDIS operational AQ predictions aday's AQI Formas All Quality fallog for Capone

> EPA maintain national emissions, monitoring data; disseminate/interpret AQ forecasts

NCAR/ASP Summer Colloquium 2016

Arthur P. Mizzi mizzi@ucar.edu

2

AQI forecasts

ACOM Air Quality Forecasting Research: OSSE for GEO, Emission Corrections, CAM-Chem/DART, and WRF-Chem/DART

NCAR/ASP Summer Colloquium 2016

OSSE to evaluate a GEO constellation for Air Quality Prediction Jérôme Barré, David Edwards, and Helen Worden

Ten-Year Reanalysis Based on Assimilation of MOPITT and IASI CO Gaubert et al. (2016)

Assimilation of MOPITT and IASI CO with CAM-Chem/DART

Reanalysis of Chemical composition	DA method / Optimization	CO Observations	Model, DA chain	Additional observations	Coupling Met/Chem
Miyazaki et al. 2015	LETKF / Total CO emissions	MOPITT V6T, only 700 hPa level	CHASER-DAS	TES O3, MLS O3, HNO3, OMI NO2	Offline
Yin et al. 2015	4D-Var / Total CO emissions & Chemical production	MOPITT V6J, total CO columns	LMDz-INCA, PYVAR-SACS	Surface CH4, Methyl- Chloroform	Offline
Inness et al. 2013	4D-Var / CO concentrations	MOPITT V4, total CO colums	IFS-MOZART	IASI-CO, MLS O3, SCIAMACHY O3 and NO2	Coupled
Gaubert et al. 2016	EAKF / CO concentrations	MOPITT V5J, CO profiles	DART/CAM- Chem	Conventional Met Obs	Online

NCAR/ASP Summer Colloquium 2016

Needs to be validated against independent datasets

Improvement against the following independent observations:

> MOZAIC/IAGOS aircraft CO (grey lines)

> WMO/WDCGG surface CO observations
 > NDACC/FTS total column retrieval

➢ Fields campaign

• Observations, CO total columns (FTS)

• CAM-Chem run

Gaubert et al. (2016)

• MOPITT-Reanalysis

NCAR/ASP Summer Colloquium 2016

Constraining Biomass Burning Emissions for Assessing Smoke-Severe Weather Interactions

- WRF with aerosol-aware microphysics (AAM) (Thompson and Eidhammer, 2014) and WRF-Chem emissions.
- Inversion based on Saide et al. (GRL 2015b) using WRF tracers (no adjoint, no ensembles).
- Plans for using it operationally for the NASA ORACLES and NOAA FIREX field experiments
- Contact Pablo Saide (saide@ucar.edu) for more details.

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART

- WRF-Chem the Weather Research and Forecasting (WRF) model with online chemistry.
- DART the Data Assimilation Research Testbed modified for assimilation of atmospheric composition observations.
 - MOPITT and IASI partial and total column CO
 - IASI partial and total column O3 (under development)
 - MODIS AOD and OMI NO2– under testing
 - AirNOW in situ observations under testing
 - Emission constraints State augmentation method under testing
 - Assimilate as RETRs, QORs), and CPSRs
 - State variable localization (joint or independent assimilation)
 - Quasi-Realtime and dual-resolution cycling.

WRF-Chem/DART: Collaborations

Berkeley: Liu and Cohen OMI NO2 and emission estimation

Red dashed line: DA without optimal emissions Black dashed line: No DA without optimal emissions

York Univ.: Miao and Chen MOPITT total column CO and emission estimation

AOD in the model **before** assimilating MODIS AOD 12Z,23th, August, 2010 AOD in the model after assimilating MODIS AOD 12Z, 23th, August, 2010

York Univ.: Liang and Chen MODIS AOD

NCAR/ASP Summer Colloquium 2016

Real-Time WRF-Chem/DART Flow

NCAR/ASP Summer Colloquium 2016

Efficient Chemical DA Forward Operators:

- \geq Retrieval equation: $y_r = Ay_t + (I A)y_a + \varepsilon$.
- > Challenges include:
 - Large data volume with low information density.
 - Retrieval error covariance cross correlations.
 - Removing contribution of retrieval prior from the retrieval.
- Joiner and da Silva (1998) assimilate phase space retrievals (remove retrieval prior and data compression).
- ➤ Migliorini et al. (2008) assimilate quasi-optimal retrievals, $y_r - (I - A)y_a - \varepsilon = Ay_t$. SVD rotation based on E_m^2 and discard those modes whose forecast error variance singular values were significantly less than the transformed observation error variance (diagonalization, remove prior, and data compression).
- Mizzi et al. (2016a) assimilate compact phase space retrievals (CPSRs) and Mizzi et al. (2016b) extend CPSRs to partial profiles.

CPSRs: Retrieval Full Profiles

- $> y_r (I A)y_a ε = Ay_t$: A is singular and its leading left singular vectors span the domain.
- Project the quasi-optimal retrieval onto the leading left singular vectors of A: data compression.
- That transform reduces the number of observations from the dimension of the retrieval profile to the number of non-zero singular values.
- ➢ The transformed E_m^2 is non-diagonal: use an SVD diagonalization (Anderson, 2003; Migliorini et al., 2008).
- ▶ 1st SVD: A = ΩΣΨ^T = Ω₀Σ₀Ψ^T₀ Compression Transform;
 2nd SVD: Ω^T₀E²_mΩ₀ = ΠΛΘ^T Diagonalization Transform;
 Assimilate CPSRs:

$$\Pi^T \Lambda^{-1/2} \Omega_0^T (y_r - (I - A) y_a - \varepsilon) = \Pi^T \Lambda^{-1/2} \Sigma_0 \Psi_0^T y_t.$$

– Bias – RMSE

Mizzi et al. (2016a and b)

NCAR/ASP Summer Colloquium 2016

Mizzi et al. (2016a and b)

Arthur P. Mizzi mizzi@ucar.edu

NCAR/ASP Summer Colloquium 2016

Mizzi et al. (2016b)

WRF-Chem/DART: Assimilation of Partial Profiles

Mizzi et al. (2016b)

NCAR/ASP Summer Colloquium 2016

CPSRs: Retrieval Partial Profiles

≻ Mizzi et al. (2016b):

$$y_r - (I - A)y_a - \varepsilon = Ay_t$$

> Discard *m* elements of y_r . The resulting dimension is n - m.

- > Discard the corresponding elements of y_a , rows of A, and rows and columns of E_m^2 .
- A was square $(n \times n)$. It is now rectangular $(m \times n)$. Thus, this is called "CPSRs applied to rectangular systems." The dimension of E_m^2 is now $((n m) \times (n m)$.
- The rest of the derivation is similar to Mizzi et al. (2016a) because they used SVDs for the "compression" and "diagonalization" transforms.

WRF-Chem/DART: Assimilation of Partial Profiles

Mizzi et al. (2016b)

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Assimilation of Partial Profiles

Mizzi et al. (2016b)

NCAR/ASP Summer Colloquium 2016

– Bias – RMSE

Mizzi et al. (2016a and b)

NCAR/ASP Summer Colloquium 2016

Mizzi et al. (2016b)

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Joint Assimilation of MOPITT and IASI CO CPSRs

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Joint Assimilation

Mizzi et al. (2016c)

NCAR/ASP Summer Colloquium 2016

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Illustration of Chem-DA Problems (Spread Collapse)

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: MODIS AOD

Mizzi et al. (2016c)

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Joint MOPITT. IASI and MODIS 18 UTC June 5, 2008

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Joint MOPITT, IASI, and MODIS 18 UTC June 5, 2008

NCAR/ASP Summer Colloquium 2016

Ensemble Kalman Filter

≻ Mitchell and Houtekamer (2001):

 $x_p = K(y - H(x_a)) + x_a$

where $K = PH^T(HPH^T + R)^{-1}$ - *P* is the ensemble error covariance, *R* is the observation error covariance, and *H* is the forward operator mapping state variable *x* to observation *y*.

> **Problem:** undersampling can lead to spurious correlations in *P*.

- Problem: overfitting and cycling can lead to degeneracy/spread collapse.
- Solution: Localization limit the spatial extent and/or state variable/observation correlations (reduce or set them to zero).
- Solution: Increase observation error to avoid overfitting
- Solution: Use prior or posterior covariance inflation.

Ensemble Kalman Filter Least Squares Framework - Spread Collapse $\Delta x = \left(\frac{cov(x, y)}{var(y)}\right)^{1/2} \times \Delta y$

- \boldsymbol{x} the ensemble of state variables at a grid locations
- y the ensemble of expected observations at an observation location
- y = H(x) where *H* is the forward operator
- Δy the ensemble of expected observation increments
- Δx the ensemble of state variable increments

With spread collapse $var(y) \rightarrow 0$

Anderson (2003)

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: Localization Examples

NCAR/ASP Summer Colloquium 2016

Arthur P. Mizzi mizzi@ucar.edu

NCA

WRF-Chem/DART Applied to FRAPPE

NCAR/ASP Summer Colloquium 2016

NCAR/ASP Summer Colloquium 2016

WRF-Chem/DART: FRAPPE (July 27, 2014)

Summary:

- Poor air quality has substantial health and economic impacts.
- One approach to mitigation is accurate air quality forecasting.
- ACOM is working to improve air quality forecasting: OSSE for GEO, emission adjustments, real-time global/regional air quality forecasting/data assimilation, and more efficient forward operators.
- CPSRs improve air quality forecast skill at reduced computation costs (~35% reduction MOPITT, ~50% reduction IASI).

References:

- Mizzi, A. P., A. F. Arellano, D. P. Edwards, J. L. Anderson, and G. G. Pfister (2016a): Assimilating compact retrievals of atmospheric composition with WRF-Chem/DART: A regional chemical transport/ensemble Kalman filter data assimilation system. *Geosci. Model Dev.*, 9, 1-14.
- Mizzi, A. P., D. P. Edwards, and J. L. Anderson (2016b): Assimilating compact phase space retrievals (CPSRs): Comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of retrieval partial profiles. [*under internal review*].
- Mizzi, A. P., X. Liu, A. F. Arellano, J. Liang, R. C. Cohen, Y. Chen, D. P. Edwards, and J.L. Anderson (2016c): Assimilating compact phase space retrievals (CPSRs): Joint assimilation of MOPITT and IASI CO CPSRs and MODIS AOD retrievals with constrained emissions. [*in preparation*].

NCAR/ASP Summer Colloquium 2016

