@THE UNIVERSITY

OF ARIZONA.

ATMOSPHERIC

SCIENCES INFORMATION

Ave Arellano

DATA ASSIMILATION AND

Fundamental Perspectives of DA

ASP AQ Colloguium, Boulder, CO
August 2, 2016




DATA ASSIMILATION (DA)

— “INTERPOLATING
SUBSEQUENT USE AS
A MODEL
2002)

o AT TSTICAL

e ISERITSDES

INITIAL DATA
INTEGRATION"

COMBINATION

OBSERVATIONS AND SHORT-RANGE
FORECASTS” (KALNAY, 2003)

BRSPS NG ALL THE AVAILABLE
ISBERERRMMA T I ON, TO DEFINE AS
MMEEGT PR ATE  AS POSSIBLE THE
STATE” (TALAGRAND, 1997)

SR NCORPORATING DATA INTO THE

ey Gl EWIS ET AL., 2006)

FOR
IN
(BENNETT,

MR

PERSPECTIVES:




'process by which
observations are incorporated
into a computer model of a

real system’ (Wikipedia)




FOR OUR PURPOSES, DATA ASSIMILATION WILL

BE

ERISENED

AS A METHOD OF = COMBEISSISHEE

INFORMATION (WHETHER EMBODIED 1IN
OBSERVATIONS OR MODELS).

SFATISTICAL PERSPECTIIVE

FUSING
PRIOR
LAWS,

DATA (OBSERVATIONS) WITH
KNOWLEDGE (E.G., PHYSICAL
MODEL OUTPUT) TO GET AN

ESTIMATE OF THE TRUE STATE OF THE
PHYSICAL SYSTEM.



Sources of Information

Q@ observations
(these are measurements of the system )

9 models

(understanding of the spatio-temporal
evolution of the system)

Q@ physica
9 climato

constraints (moisture must be > 0)
OgY

from a point of view of information, models and observations
are not distinct; it 1s the mechanism of obtaining this

information that Is distinct



WHILE SRR RS M E T Ly U S B B IESS T HTESSEE
OBSERVATIONS ARE:

1.MOSTLY INDIRECT MEASUREMENTS OF THE
STATE OF THE ENVIRONMENT

2.HAVE ASSOCIATED ERRORS

. INCOMPLETE (DISCRETE)

4L, IRREGULAR SAMPLES

W

ye = h(xy) + ey, e,.~N (0, (6°2)?%)

The true state at time k xj. is related to the observation through A( ).
errors: random (precision), systematic (bias), representativeness



MODELS ON THE OTHER HAND ARE IMPERFECT.
WHILE THEY TYPICALLY ENCAPSULATE OUR CURRENT
UNDERSTANDING OF THE SYSTEM, THEY

1. ARE INCOMPLETE (AND DISCRETE)
REPRESENTATION OF THE SYSTEM
2.HAVE ASSOCIATED ERRORS

x* (tk+1) = M, [xt(tk)] T N, Nk ~N (0, qz)

The evolution of the state Is typically described as PDEs. e.q.,

LiLBLBLELELE
adv at mix at conv at scav at chem at em at dep

Eq. 4.10 of Brasseur and Jacob, 2016




HOW DO WE PRODUCE A BEST ESTIMATE OF THE
STATE OF THE EARTH JSYSTEM GIVEN
INCOMPLETE OBSERVATIONS AND IMPERFECT
MODELS?

HoOW DO WE ENSURE AN OBSERVATIONALLY -
CONSTRAINED ESTIMATE THAT IS AT THE SAME
TIME CONSISTENT WITH OUR MODEL
UNDERSTANDING?



] OF COURSE TS
/l“ BASED ON ONLY A
| COUPLE OF DATA

Uss. E-_CONOMIC FoRechsT ) PONTS.

i AT THE BOTTOM- Iy £
m& :;; sthun caldl SamSION FOrT

$.1p-09



6BSGI’V3.1'.IOI’IS

|

=

A

Data
Assimilation

A

Errors

Analyses

Fig 2 Lahoz et al 2010

odel
Forecast



short—range forecast measurements

corrected representation of the atmosphere



How do we combine information?



loy Example:

VVe have two measurements of temperature
in this room (T, and T7).

VWhat would be our best estimate of the
temperature (state) of this room!?




Mean, RMS, Variance/Covariance, and
Correlation



Supposed we have 2 data sets containing the values x4, x,, x5, ... x,, and y;, ¥, y3, ... V..

The mean, X, is defined as a measure of central tendency (expected value of a random
variable x or E(x) or (x), i.e.

Xi

=

et |
X = —
n

=il

The variance, o2 is defined as a measure of spread (expected value of squared
deviation from the mean, or E([x — x]?), i.e.

1 n
of = EZ(xi )
i=1

var(x) = E([x — x]*) = cov(x,x) = g, or
var(x) = E(x*) — [E(x)]?

The standard deviation o, is the square root of the variance, o2.



The covariance g, ,, is a measure of how x and y change together, i.e.
n
1
Gy == ) b = Zly; - 71

n
=1

cov(x,y) = E(lx; — x]ly; = y]) = (lx; — xlly; — y])

cov(x,y) = E(xy) —EMX)E(y) = cov(y,x)

The correlation is defined as a measure of linear relationship between x and y, i.e.

For uncorrelated x and vy,
cov(x,y) =E(xy) —EMX)E(y) = EX)E() —EMXE(y) =0.
The variance of x + y is defined as

var(x +y) = var(x) + var(y) + 2 cov(x,y)



The root mean square of x is defined as a measure of the magnitude of x (or quadratic
mean), i.e.

XRMS —

x> = E(x?) = /(x?)

n

e\
F'M:
=

What is the relation between xz,s and o, ?

0, = yJvar(x) = [E(x?) — [E(x)]2] /2
If E(x) =0, then

Ox = XRMS



Toy Example:

We want to measure the temperature in this room, and we have two thermometers
that measure temperature with errors:

T1=Tt+61

T2=Tt+€2

where 7/ is the true value (which, like the errors, we never exactly know in reality).
We assume that the errors are random and unbiased and normally distributed: i.e.
E(e;) = E(e;) =0
where E( ) is the “expectation”. We also know the variances of these errors: i.e.
E(ef) =0f and E(e;) = o’
Assume that the errors of the two measurements are uncorrelated:
E(ei,e;) =0

Question: How can we estimate the true temperature in an objective (feasible) way?

—h




Solution:
Estimate T; as a linear combination of two pieces of information:
Ta — a1T1 + asz (1)

Since E(e;) = E(e,) = 0, it follows that E (e,) = 0 and that the ‘analysis’ T, should
be unbiased, i.e. E(T,) = T,,E(T;) = T, and E(T,) = T,

E(T,) = a,E(Ty) + a,E(T)

T, = a1 T + a,T;

l1=a; +a, (2)
T, will be the best estimate of T; if coefficients minimize mean square error (Least

Square Method). Since it is unbiased, minimizing the mean square error is the same
as minimizing the error variance (Minimum Variance Method).

0% = E[(T, = T)? = E |(ax(Ty = T) + (1 — a) (T, — T))’| (3)

Expand Eq. (3), taking into account assumptions on correlation and bias. We then
find a,, a,, 02 and T, by first minimizing Eq. 3 (take the derivative with respect to
a,, equate to zero and solve for a, ).




We find:

1
(6 + 0%) lz‘l'iz
01 03

1
(6 + 02) Lz"'iz
01 0

The weights of the observations are proportional to the precision/accuracy of the
measurements (define here as the inverse of the variances of the observation
errors). In other words, the weights depend on the relative accuracies of the
observed estimates.




We also find:

T1+T2
2 2 2 2
T, =2 % %2 2t 7
S U R C ) R CR e R
of 0y
2 2
o o, ,
g% = o:(1—a
a (0_12+O_22) 2( 1)
1_1 1
o of 0of

The error variance associated with the combined information is generally lower
than the error associated with any of the 2 pieces of information being combined.
And that at worse, it is equal to the minimum of the errors of the individual pieces of
information but never larger.

If the error of one piece of information is infinitely large, the information from this
piece of information being combined becomes vanishing small.

In the end, the analysis is the weighted average of the relative accuracies.




How about an analysis from an observation and a
model (guess) information

Rewrite analysis equation in terms of a first guess (prior/forecast/background)
information T}, and observation T,

Ty = a7, + (1- al)Tb

We find the same solution:

1
R R WY
02 JI;Z
T, T
Lo
oF 0}
la =97
A
o2gf
2 0~b 2
o (1—a
a (O-()Z‘I'O'g) b( 1)

In the end, the analysis is the weighted average of the relative accuracies of the
observations and the model (first guess).
e ————— e ——




Our basic analysis equation:
To =Ty + W(T, — Tp) analysis state estimate

4l

1 1

0 =oy(1—-W)=Wd} = (02 + 02> analysis error estimate
b o

2
Ifweleta =22
Op

d
a

W=—e=— weights
i
Ifo? < of,thena ~0,W =~ 1land T, = T,, 02 =~ 62 obs highly certain
If 62 > o/, thena » 1,W = 0and T, ~ T}, 62 = o} model highly certain

If 62 = o, thena = 1,W = 1/2and T, = 1/2(T, + T,), 62 = -of = -2  average

Our best (optimal) estimate (or analysis) of the state (temperature, in our toy
example) I1s a linear combination of two pieces of information (model and
observation). The weight applied to each information Is associated with its
relative accuracy. Our analysis I1s optimal since the corresponding error
variance 1s minimum (l.e., it has the least mean square error).



Variational (cost function) Approach

We can also obtain the same best estimate of T; by minimizing a function of the
temperature defined as the sum of the square of the distance (or misfit) of the
estimate T to the model and observations, weighted by their associated error
precisions/accuracies:

oL (T_To)z_l_(T_Tb)z
> 02 o

The squared deviation of T from either the model or observation is weighted in
inverse proportion of the variance of the error on the model (or observation).
Minimization of the ‘cost’ function / therefore imposes that T must fit either
observation to within its own accuracy. This leads to an estimate T = T, given in the
previous example using the method of weighted least squares.



Solution:

= +
/ 2 02 of

1 [TZ —2TT, + T,* T?-2TT,+T,?

0 T T T T
] — Rl + o l; =%
difSa-" 05 o, Of

2 2 2 2
<00 +ab> 05T, + 05Ty
02 e 2 2

2 2 2 2
opTo + 05Ty op o,

= = = T, + T
" (@2+0d2)  (624+02) ° (62+4+a2) "°

== (1 — )T, = T + W(T, — T)

oz 11
o M iIZE G 2 2

-1
1 1 020/
0‘2= — 4+ — — ey =0‘21—W =WO'2
a ( > (O_Oz_I_O_bZ) b( ) o



Now, consider 3 pieces of information:

How do we combine the 3 pieces of information of
temperature In this room to find our best estimate of
temperature!




To=T, + Wy (To1 —Tp) + Wy (T, — Tp)

least squares

or
Ll ;sz’l) o GTfZ) - ;;b) variational
or
Tay =Ty + (G )(Tol T,) sequential filter
. (1 1>1
g N S s
Op 00,1
T, _Ta,1+(0_02+0_b)(T02 al)
R G e ( gear T’”)
T,
=T To1—Tp) + T,; — T, Tpq — T,
% (%1"‘%)( b) (002+0b)( b) (002+0b)(001+0b)( b)




OK, that was easy. What if we have 2 pieces
of information that are not in the same
location?



Guess and Observations at different location
CASE 1: 1 OBSERVATION & 2 MODEL GUESS

BOCAFION (GRID) 1 0 7
eS| MODE L
&ANALYSIS
GRID

CONSIDER THE CASE WHERE THE OBSERVATION (T, 1) IS
LOCATED AT DIFFERENT LOCATION (SAY, THE OTHER ROOM).
WE WANT TO FIND OUR BEST ESTIMATE OF THE TEMPERATURE
IN THIS ROOM GIVEN OUR FIRST GUESS (MODEL) OF THE
TEMPERATURE (Tg o0 Tg,1) IN BOTH ROOMS.



Given:

Observation of room temperature at grid 1 and its error characteristics,
Ty, =T:q + €,1 Where E(eo,l) = O,E(eoz,l) = g1

as well as, a first guess of the room temperature at grid 0 and 1 and their error
characteristics,

Tpo = Tro+ eno Where E(e,o) = 0,E(eZo) = of,
Tp1 = Ti1+e,, where E(e,,) =0,E(eZ,) = of;
where

sz,o o J1?,1 and E(eb,o :eb,l) = )00,1(7192

Assume that the error in observation is uncorrelated with the errors in our first guess,
l.e.,

E(eo,p eb,O) = 0go,1}p,0} = 0

E(€o4,€p1) = (013013 = 0



Solution:

Using our analysis expression T, g = T, o + W(TO,1 = Tb,l): we can subtract from this
equation the true temperature T; to formulate the analysis error equation.

(Tao = Tio) = (Too—Teo) + W(|To1 = Ten] — [To1 — Tea])
such that,

(ea0) = (en0) +W([eon] = [ena])

We find W by finding the least square error of the analysis assuming that the model,
observation, and analysis are unbiased.

First, form an expression of the square error of the analysis.

(eao)” = (eno) +2(en0) W([eon] — [ena]) + W?([eo1] — [e5a])”

Second, take the ensemble average (expected value) of the square error of the
analysis

2
E(eZ,) =E(eto) + 2WE(epoleor —epq]) + W2E ([eo,1 —ep1] )

02y = 0-13,0 + 2W 0¢5,13p,0y — 2W P00 + W20Z, — 2W?20(6 130,13 T+ WZO_I?,l
Since the error in the observation is not correlated with the model,

020 = 0fo+0— 2W py 0 + W20Z2, — 0 + W2af,



Third, find the derivative of o, with respect to W and equate to zero, i.e.,

do,
dw

= —2po10¢f + 2Wa2, + 2Waf, =0

ZW(O-Oz,l + 013,1) = 200,10%

2 2
Po,10p _ Poa _0p1
W = > g —1+awherea— >
(00,1 + Ub,1) Op 1
and so
Po 101?
= o — (To,l " Tb,l)
(0-0,1 in Gb,l)
or
Po1
Tao=Tpo + 1+a Hstier Tb,l)

The analysis mean square error is:

2
Po,10p

2
o
2 Po,10p )
040 = Opg — 2 > > Po,10p T
(0_0,1 i3 Gb,l)

(002,1 ar 0192,1)

E

2
o,1

“

2
Po,10p

(002,1 r 0192,1)

IE

2
b,1



to simplify leta = 024, b = 0/¢ = 041 = 04, p = po,1, and ¢ = 04,

2p%b%  p?b?b p?b4c

ST 2 ' (b ()2

_(b+ )b +c)b—(b+c)2p*b? + (b + c)p?b?

X (b+c)(b+c)

EGES e e pebee = p2b2" b ((b + ¢) — p*b)
= (b +c) ~ T (+o

2 (Ub - Jo1 Po,1 013) 2 P0,120§
Og0 = O'b =o0,|1-— > >

(O-b 0,1) (Gb to )

2
Po,1
Uao —Ub(l P01W)_Ub (1_1+a>

In summary,

2
Po,10p Po1 analysis state estimate
=T 5 Tt e 5 ) =3 T To1— T,
a,0 b,0 (0_02’1 E 0_192,1)( o,1 b,1) b,0 T 0(( o,1 b,1)

2
Po : :
020 = 04 (1= po W) = 0; (1 = +1a> analysis state error estimate



Summary
| obs, | guess (collocated)

1
I +1_|_—a(To = in)

3 2(1 1 ) ofo? 1 i =\
o5 =0 — —— ==
% ¢ 1+« (62 + o) GG

| obs, 2 guesses at different locations

Po1
1+«

2 s )
Po.1 Po,1 Op
2 2 ) 2 ’
Gerne=tos | 1. — =05 |1—
i ( L a> : ( (o2 + 03,1)>

2 obs, 3 guesses at different locations

Ta,o = Tb,O i

7LJ._'TbJ)

Po1(1+a)— po2 P12 (
2

Po2(1+a)— po1 P12 (
UlET g o z

o T+ @7 =y

TBJ._'Tbﬁ)'+ 7%2 _'sz)

2 2<1_<1+a> (Looa]” + [pual") = 2 0 oo p>

O — 0
& i (o) et (P1,2)2



Indirect Measurements (Use of Observation Operator)

We have an object, a stone in space. We want to estimate its temperature T, (in
Kelvin units) accurately but we measure the radiance flux density, y (in Watts/m?2)
that it emits. We have an observation model y = h(T,), i.e., y = oT,* where h( ) is
a non-linear forward model (observation) operator that includes in some cases
transformation and grid interpolation.

We have the following expressions for the measurement process and estimation:

yzh(Tt)+eo
Tb=Tt+eb
Tath‘l_ea

T.=Ty, +K(y — h(T},))
assuming E(e,) = E(ep) = E(e,) =0, E(e,,e,) =0,E(e?) = 02 and E(e?) = o?.
Problem: Estimate T, and E(e2) = o?2.

Note: From Taylor Series,

dh(T;)
h(T,) = h(T,) + dT, (Te — Tp)
_ dh(Ty)
N e H0 f

H is the derivative of the forward model operator with respect the model state and
evaluated at the model first guess (background state). Here, we have performed a
linearization of the nonlinear operator around the background state, implicitly
assuming that the truth is not too far from the background.

After estimating T, and ¢, consider a simpler linear case (i.e. y = hT,).



Solution:

Our analysis (unbiased) is a linear combination of our first guess (model
information) and our measurement (observed information):

To =Tp + K(y — h(T})) (1)

To estimate T, we find the ‘weights’ K such that the mean square error of T, is
minimum (least squares), i.e.

1) set the expression for mean square error
of = E[(Tq — Tp)?] (2)
2) take its derivative and equate to zero

2
do

dK

3) solve for K



Expand Eq. 2 by first substituting Eq. 1 to T,, in Eq. 2

02 = E[(T, = T)?] = E |(Ty + K(y — h(Ty)) - T;)| (3)
We know that,

T, =T, +e,andy = h(T,) + e, such that

h(Ty) = h(T;) + h(ep)

Substituting these to Eq. 3

62 = E[(T, —T)?| = E [(Tb + K (R(T,) + e, — (A(T,) + h(ep))) — Tt)zl
We then linearize h(T,) at Ty,

h(ep) = h(T,) — h(T;) = h(Tp) — (h(Tb) + H(T, — Tb)) = Hey,

02 = E[(T, — )2 = E[(T, + K(h(T,) + ¢, — (h(T,) + He,)) — T,)’]

O-c% = E[(Ta = Tt)z]

E :(eb + K(e, — Heb))zl



0% = E[(T, — T.)?] = E [ (e, + K(e, — Hep))'|

Taking its derivative and assuming E (e2) = o2 and E(e}) = of

2
2% = —2Ho}+ 2Ka? + 2KH?af = 0
e los
of + H?af
Hof
Jio =i =k h(T
a b O_b +H2 2 (y ( b))
1 =R
2t a o




|-axIs

Domain D

Unknown States

X = (X1, X2, .. XI, .. Xn)'
|=(j-1)ni+i

Background States

Xb = (X1?, X2, .. Xi®, ..



Observations are In general, different from the modelec
state variables by: a) being located in different points anc
b) possibly being indirect measures of the modeled state
variables.

y:Hx_I_v O O o] o o) O o

giEEEC e Torward
observational operator that @ °
converts the background | o
IEGRIter TiiFst gluess of the
observations. H can be
MEliillfiear (or just an .
interpolation operator). The
iInnovation (obs Increment)

s d=y, —y» =Y — Hx;




let d=y,—V,=YV,—Hx, and e=%X-—x

Similar to our previous examples, we find a weight matrix VW such
that our estimate minimizes the mean square error

X—Xx, =W(y,—Hx,) —e=Wd—eée
An error covariance matrix Is obtained by multiplying a vector
error e;] Dby its transpose
g H " =[e; e v e
c,

and averaging over many cases to obtain the expected value:

e,€, e,é, ATl
P = E(ee”) = ee” = “2fa 0 U
€n€1 €n€7 "t €nbn

This matrix I1s symmetric and positive definite. The diagonal

elements are the variances of the vector error components

elel — O-lz




T we normalize the covariance matrix, dividing each component by
the product of the standard deviations: e

e
: ]/Uin — Corr(ei,ej) = Pij

we obtain a correlation matrix: 1, piy
1
C = Piz : an
g2 0 0 ' ' '
(; . 0 Pin  Pop’ il
and if D = 92
] O O 0-2_

s the diagonal matrix of the variances, then we can write

P = D/2CD'/2



Statistical Assumptions

ep (i, ) = xp(i,j) — x(i, )
e(i,j) = 2(i,j) — x(i,j)
€oi = Yo(11) — ¥ (1) = ¥ (1) — Hx (1)
We do not know the truth X, thus we do not know the errors of
the avallable background and observations. But we can make a

number of assumptions about their statistical properties. The
background and observations are assumed to be unbiased.

Efe,(i,/)} = E{x,(i,/)} — E{x(i,j)} =0
Ele,(r))} = E{y,(r)} —Ely(r;)} =0

f the forecasts (background) and the observations are biased, in
brinciple we can and should correct the bias before proceeding.

The bias can also be estimated as part of the analysis (Dee and
Da Silva (1998).




Statistical Assumptions

P=P,=E{€€"}, P,=B=~FE{epe,’'}, P,=R=Elee,'}
Eie,ep’} =0

The nonlinear observation operator H that transforms model state
variables into observed variables can be linearized as:

H(x + 6x) = H(x) + H6x

where H Is a pxn matrix denoting the linear observation operator
with elements h;; = aH"/ax_
1

We also assume that the background (usually a model forecast) Is
a good approximation of the truth, so that the analysis and the
observations are equal to the background values plus small
increments. [ hat 1s,

d=y, - Vs =¥, — H(x+ (x — %))
d=y, - Hx) —HE, —x) =e, — Hey



The solution to this problem (least squares) Is:

X, + W(y, — Hx,)

W = BH"(R + HBH") !
P=(,-WHB

X

Recall:
@ chiple | T, =T, + a,(T, = Tp)
o,
S (a7 + a2

Toy Example 2: T, =T, + K(y — h(T}))
4 Ho, i (Hop)oy,
~ H202 +02 (Hop)? + o




innovation (obs increment)

e
/Y+ W Hx,

n-vector posterior T

analysis increment

(analysis)
n-vector prior (first p-vector
guess/background) observations

nxp weight matrix (gain matrix)







Think Toy Example:
X =xp, + W(y, — Hxp)
W = BHT(R + HBH") 1

W = BH'(HBH") '(HBH")(R + HBH')-1
regression ratio of model error

(map to model space) to total error
(shrink In obs space)

2
Po,10p

(03,1 r 0192,1)

2 2 2
W = Op 0 Op 1 5 0o 1 Op 1 Opo 1
T gf a2, ) T Nl )\ oty
b,1 0,1 b,1 b,1 0,1 b,1 b,1
aPi

BB ELRLEL B
— + + 1 it
at mix conv scav at chem dep

Eqg. 4.10 of Brasseur and Jacob, 2016

(To,l = Tb,l)

Tao=TpoH

op;
ot

%} {

ot

op;
ot

op;
ot

%} {%
ot |, | ot




General Problem: Given a set of observations and a
MCdElN o some physical parameters, WindESEEEs
knowledge of the observations tell us about the model

state!?

Let X be n-vector of model state and y be p-vector of
observations. I he information we want to know Is given
by the conditional pdf, p(Xx|y).

In practice, it is difficult to obtain p(X|y). Typically, we find
attributes of p(X|y) which can help us estimate X.
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ba:}esiam E.,wferew@e

Pos%@.rior

b , p(xly) = & pOIplylx) “Nixa, oa?)

moximize p(x|y) to find xa









0.01

0.009

0.008 |-

0.007

r O

2= EQ&(y) =J x p(x|y)dx

62 = var(x|y) = f (x — %)% p(x|y)dx

p(x|y)~N(20.6,1.2)




Let X be n-vector of model state and y be p-vector of
observations with error v. VWe assume that:

x ~ N(u, P)
y =Hx+v
v~N(O,R)
i) = p(y|x)p(x)
p(y)
il 1 1 I » Jei |
p(x) = 2272\ ppiTz &P (—5 S T & (0 — u))
1 1
p(y|x) = TR IIVE exp <— E(y — Hx)TR (y — HX))

1
2n™/2|HPHT + R|!/?

p(y) = exp (—%(y — Hp)T(HPHT + R) " (y — Hu))



p(y|x)p(x)  N(Hx,R)N(u, P)

. — — N X P.’f
Pl = = T N EPHT + B) | X PY
_ |HPHT + R|/2 1
pWXly) = 5 =7 pri7e | RZ &P (_ Ej)
where

J=x—w)P 1 (x—pu)+ (y—Hx)TR '(y —Hx) — (y —Hw)"(HPHT + R)~*(y — Hu)
we also know,

\HPHT + R‘l/z
ZH”/Z\PP/Z\RP/Z

p(x|y) = exp (— %(x — TP, (x — ﬁ))

And so using completing squares, we arrive at a solution of our
estimator:

E(x|ly) = Px(H'R"'y + P~ 'p)
Elx—%)?%] =P *'+H'R'H) 1

X
Py



Note the similarity o

Fihese'es

estimates using the

‘Imates to our

east squa

res approach

R =EX|y) = P;(H'R 'y + P~ 1)
P,=E|lx—%)?]|=(P 1T+H'R'H)1

Toy Example |:

1
Iq

Toy Example 2.

O-c% (_2 To

1
+—2Tb

)

i 1+1‘1
G o7
, (e e
Sl \ioe o7



EsIcRic also similar to:
X =E(X|y) = n+PH"(HPHT + R)~'(y — Hp) = p + K(y — Hp)

P, = E|(x— E(x|y))"| = P-PH"(HPH" + R)"'HP = (I — KH)P

oy Example |:
2
0]
Ta :Tb_l_W(To_Tb); O-C% — (1—W)O'2, W = b
: (62 + a?)
Toy Example 2:
Ho/

=K (T, — h(T;)), o2=0—-—KH)a? K=



equivalent to finding the minimum of -In{p(X|y)}

8

J=&-—w)'P(x—pu)+ (y—Hx)"R *(y — Hx) — (y — HW)"(HPH" + R)~'(y — Hp)



variakional method

7 + Jp (x)

analysis

iy i ‘1
o o SRR
it ] 5
- ‘N-, s Sl Sl - = - LN " - 7 - Y S N N N " - o - LN LS LR -
bs"

minimize I(x) ko find x,



This is similar to what we did earlier (variational approach):

J=xx-wW™P'x-—w +(y—-Hx)'R"'(y — Hx) + (y — HW)"(HPH" + R)~'(y — Hp)

VWe find our estimate by minimizing the cost function and
equate to zero

d
6_)]( =P 1x—p)—H'R1(y—Hx)=0

(HIR"IH+P ) x— (H'Rly+P1pn =0
R=H'RTIH+P )"I(HTR 1y + P 1)

Ve can also approximate the error covariance of the estimate by

taking the Hessian or second partial derivative:
0]
— =P 1+ H'R'H
x> >

P =(P1+H'R1H)1



This is also similar to our one obs + 2 model guesses example:

ROCASFTON (GRID) 1 0
OBs 1 MODEL &ANALYSIS GRID
Tl =10 11|+ [eoa] pil=l0 11[3°]+ il
01| — Ttl 0,1 or Y1 X, 1
X U T
ebo 0 e 0 0
TbJ [T“] eb,1 21 IXJ u1]+[T1]

more generally,
y=Hx+v, R=EMW) =]0,2]

2 —

o Do 10p 00
b,0 0,1Y%pb,0Yb,1

Nt P =FE(117) =

1
Q
SN

2
P1,00p,10p,0 Op 1 Po,1 1



Our estimates are given as:
X =nu+ PHT(HPHT + R)~1(y — Hp)

o] =[]+ prraem 07t (- 10 1137

Hq
where 3
T _ 2 Po1] 10 Po,1
R = 0 [Po,1 1 ] h ]
T R pO 1] R 2
HPHT +R=1[0 1]o; 1 + 05 = 03, + 05

PH(HPH™ + R)~* = o} |"%" | (6% + 02) "
and so
2| =[]+ o3 [P3] (03 + 0920 — )
B ) odor - %y,

o2 o) 5 TR

0o 107 o

1%b Jois | b

Ta,O = Tb,O - (O_bz n 0_02) (To,l s Tb,l) and Ta,l e Tb,l ' (O_bz hi 0_02) (To,l o Tb,l)



Again, this Is similar to:

R=EX|y)=pn+ HTR'H+ P 1)"'H'R 1(y —Hp) = n+ K(y — Hp)

Toy Example | :
7
Io =Tp + -2 (=)
ol
5+
Toy Example 2.
2
2
o= Il aF (H2 - 1) (T, — h(Tb))
ot " oh



The corresponding error covariance of our estimates Is given as:
P; = P-PH'(HPH! + R)"1HP = (I1 - KH)P

-6(2)- 2 ol pO,l_ 2 pO,l 2 2\—1 2 1 p0,1
Po= ol =0ty 1o} ]GEron 0 1o} [,
2 N
| =0 |, |- oo} + 03) o} pol’ll [Po: 1]
01, Mo, -
p. — G 2 [ L pos o) Po1®  Poa
0 _6%_ d pO,l 1 (O-bz + 0-02) p(),l 1

R @ lfie error variahce of our estimates are:

2
2 -2 o
=of(1-28%5)  and 6i=o] <1 ; )

(67 + 02) (of +02)

O 2 o

2 —_ 2 ’ b an 2 = 2 1 —

=g — 0 Oy,

e ( (02 + 002)) i (o7 + 02)




Let's do a Gallery Walk.

Bayesed and Confused



Q@ Group yourselves into | or more (need 6 groups)

Q@ Groups | to 3 will work on the left side (4 to 6 on the right
side)

Q@ Your task: Give your best description (or better vet identify)
what Is the picture In the poster all about. write it down
(I-3 minutes)

Q@ Indicate the level of uncertainty of your description/
identification) by annotating with stars

| star = Have no idea
PR = Elmm, looks familiar
Ece= Gotcha

@ Go to another poster and do the same (but now taking into
account the added information from the previous group)

@ After you have gone through all 3 posters, assign a reporter
from your group. He/She will report your description/
identification of the picture.






(2) Incomplete Guess, Noisy (large errors) & Complete
Observations

captured this stunning visible image of

at 652 a.m. EDT, just 28 minutes beforeicHiEns
andfall in New York City.

L R
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»




(2) Incomplete Guess, Noisy (large errors) & Complete
Observations

The GOES- |3 satellite captured this stunning visible image
of Hurricane Irene at 8:37 am. EDT, just 28 minutes before

Irene’s landfall in New York City.

http://www.nasa.gov/mission_pages/hurricanes/archives/201 1/h201 | Irene.html



http://www.atmo.arizona.edu/index.php?section=people&id=students
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3 Somewhat ‘Accurate’ & ‘Complete’ Guess, Noisy (large
( ) errors) & Somewhat Few Observations

The Starry Night vibrates with rockets of burning yellow while
planets gyrate like cartwheels. The hills quake and heave, yet the

cosmic gold fireworks that swirl against the blue sky are somehow
restful.

| — ——————

http://vavv.ibibIio.org/wm/ paint/auth/gogh/starry-night/



http://www.atmo.arizona.edu/index.php?section=people&id=students

(4) Wrong Guess, Noisy (low errors) & Few Observations

ht-set win at US Open

ises to straig

Nadal cru




(4) Wrong Guess, Noisy (low errors) & Few Observations

Djokovic cruises to straight-set win at US Open

00—

http://www.boston.com/sports/other-sports/tennis/20 | 3/08/2 //djokovic-cruises-straight-set-win-

open/ | hDa8MixY2UOV2rAT glOXK/story.htmi



http://www.atmo.arizona.edu/index.php?section=people&id=students

(5) Incomplete Guess, Noisy (low errors) & Few Observations

A woman near

ileerak

Images of the

Creek
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(5) Incomplete Guess, Noisy (low errors) & Few Observations

Images of the Colorado flood. A woman near __Boulder

@@=




( | ) No Guess, Noisy (large errors) & Few Observations
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( I ) No Guess, Noisy (large errors) & Few Observations

AR Mz
Project Scientist

http://www.acom.ucaredu/cgi-bin/acd/pictureBoard.py



http://www.acom.ucar.edu/cgi-bin/acd/pictureBoard.py

Ingredients of a Kalman Filter

QA discrete process model
& change in state over time
& linear difference equation

QA discrete measurement model
& relationship between state and measurement
& linear function

Q Noise Characteristics

9 Process nolise

9 measurement noise




MEASUREMENT
A PRIORI

SYSTEM
ERROR ERROR
SOURCES SOURCES INFORMATION
SYSTEM
SYSTEM STATE
STATE OBSERVATION RSl Are
x(t) z(t) x(t)
SYSTEM —— ME ASUREMENT 2 e -
Gelb (1974)

op;
ot

op;
ot

%} {% } {%} {%} {%}
at adv at scav at chem at em at dep

Eqg. 4.10 of Brasseur and Jacob, 2016

L

op;
ot

2] 2] 4
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Kalman Filter in a Nutshell

Initial Guess 2. Compute Kalman Gain
Xos Po K, =PHy (HPHI+R,)

T .

1. Advance in Time
X =M X 3. State Update

a — f 0] f
PII+1:MkPI?M-I£+Qk Xk_xk-l-Kk(yk-Hka)

i -

4. Error Covariance Update

P;‘:(|-Kka)Pkf



Recall: Kalman Filter in a Nutshell

Initial Guess 2. Compute Kalman Gain
Xos Po K, =PHy (HPHI+R, )"

7 \

PRFDICT CORRECT
o .

4. Error Covariance Update

P;:(|-KKHK)P,I




Information Filter in a Nutshell

Initial Guess 2. Compute Kalman Gain
o P Ko=((R) +HI(R)HL) HI(RY)

P/ \

1. Advance in Time
X =M X 3. State Update

a — | f 0 f
PI£+1:MkPI?M-II<-+Qk Xk_xk"'Kk(YK'Hka)

. o

4. Error Covariance Update
(Re)"=(RE) +HI(R)"H,




Variational Data Assimilation

A class of assimilation algorithms in which the field to be
estimated are explicitly determined as minimizers of a scalar
function, called, objective or cost function, that measure the
misfit to the availlable data.

VWe can construct an objective function of the form:

J(x) = %(X — x?)T(P?)~1(x — x?) + %(H(X) —y )" (R HX) —y°) =]p + /o

which measure the deviation of our state from the prior
(background) Information and the deviation from the
observation. Our estimate of the state, x4 can be
derived by minimizing the cost function, v, J(x%) =0



Graphically for n=2, the geometry of the minimization of the cost
function term for the background state Is:

A I(x)
I(x)| . \ b
IL : \ I|'
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=" il - :fl
A 1
Il . _H_,.,-—"'F r_f _'._'_.,el""" J_.l‘ll
e
l'(/ __.--‘_H_'_._'_'_'_ _,-F""_.-'-FF—
\I'I;'x Tk __-'""fjr/
M, 5 &
H\. l- e — J’r
N o /
\"'h,.__ﬁ R - e
H""\-.. . ___,_.-'-"'- .
X 2 A R
: | /
' _'_._;_,...—-—F'_'_._-_. —_—
)cféf—,._—rf — "1 — —
SN
-

The minimization works by performing several line-searches to move the
control variable to areas where the cost-function is smaller, usually by
looking at the local slope (the gradient) of the cost-function.



The objective function :

JGto) = 5 (%0 ~ %) (B) " (30 — 38) + §;<Hk<xk> ¥ (R (Hi (%) — ¥)

Minimization of the cost function will define the inrtial condition of the
model solution that fits the data most closely. Following Sasaki (1970), this is
called strong constraint four-dimensional variational assimilation (4D-Var).

T we consider the model error, we have the following objective function to
MiNiMIze:

J(Xo) = %(Xo —x5) (P2)" (xo —x3) + %;(Hk(xk) — vy )T (Re) ™ (He (Xk) — yi)
11{—1
& Ekzzo(xkﬂ — My (X))" Qi)™ K1 — My (X1))

Minimizing this cost function where the model equations are present as
noisy data to be fitted by the analysed fields like any other data Is called
weak constraint 4D-Var.



4D-Var minimizes the misfit between a temporal sequence of model states
and the observations that are available over a given assimilation window. In
contrast to Kalman filter (and to sequential algorithms), it propagates the
information contained In the data both forward and backward in time.

The general iIdea behind 4D-Var is to find the Initial condrtions which lead to
the best fit to observations which are spread over a time interval. The
notion of ‘best’ Is defined by a scalar cost function.

Find the Inrtial state which produces a model trajectory (when integrated In
time using the forecast model) that ‘best’ fits the observations.

J0x0) =5 (x0 = x8)" (B) ™ (x0 = x8) + §;<Hk<xk) — )" R (Hie (%) =~ i)
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3D-Var
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assimilation window
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X Kalman Filter
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MY OWN FINAL THOUGHTS

A DATA ASSIMILATION PERSON:

€0 FOCFOCTEX

€

€«

IS A HPC (COMPUTING) ‘HOG’

“ABUSES’ THE DATA

THINKS THE MODEL IS WRONG BUT
“BLAMES’® THE DATA ANYWAY

HAS THE ‘CONSTITUTIONAL  RIGHT TO
CHANGE THE MODEL AND/OR DATA BUT IS
VERY CONSERVATIVE ABOUT CHANGE

MUST DO EVERYTHING RIGHT — THE
DEVIL IS IN THE DETAILS

PRETENDS TO KNOW THE TRUTH
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THE ENSEMBLE KALMAN FILTER

INVERSE METHODS
FOR ATMOSPHERIC
SOUNDING

Theory and Practice

Some References

EncyClopedia of Mathematics and its Applications 104

DYNAMIC DATA
ASSIMILATION: A LEAST
SQUARES APPROACH

Eugenia Kalnay

Atmospheric Modeling,
Data Assimilation
and Predictability

ANDREW H. JAZWINSKI

stochastic
Processes

““ﬂllermg

Data

Assimilation

Making Sense of Observations




"Ave, may L 9o home? I cant
assimilabe any more daka &cwciaj."

R

http://www.condenaststore.com


http://www.condenaststore.com
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4D-Var Implementation

Given a scalar cost function
1 p\T b\~ 1 b 1 . O\T =\ o)
J(x0) = E(Xo T Xo) (Po) (Xo == Xo) - EZ(HR(XR) —y2)T (Rp) M (He(Xx) — y7)
k=0

we want to find an estimate of X, that minimizes the cost function.



Graphically for n=2, the geometry of the minimization of the cost
function term for the background state Is:
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The minimization works by performing several line-searches to move the
control variable to areas where the cost-function is smaller, usually by
looking at the local slope (the gradient) of the cost-function.



4D-Var Implementation

4D-Var can be seen to be an rterative algorithm. For iteration, I, we
will;

|. Run the nonlinear model with initial conditions, X,
@Mty to tx

2. Compute the cost, J(xg ).

3. Compute the gradient with respect to the initial state, V_i ] to
find out the direction of steepest descent.

4. Choose the descent direction, d* based on the direction of
steepest descent, and choose a step size, a.

5. Modify the initial state: xt! = x} — ald!

The iteration 1s continued until the minimum of the cost function iIs
found.



4D-Var Implementation

|. Run the nonlinear model with initial conditions, X;
@hESt, 10 Ly

Xp+1 = My (Xk)

Typically, we have a nonlinear model which is written as a set of N nonlinear
coup|
pled ODEs = -
dx : .
— = F(x) ) C—t LAl o Okl et
dt Xy ho

Once we choose a time-difference scheme, it becomes a set of nonlinear
coupled difference equations (e.g. Crank-Nicholson)

xk _|_xk+1
NG — Xl AtF( )

2

A numerical solution starting from an inrtial time can be readily obtained by
integrating the model numerically between the initial tme and a final time

(‘running the model’). This gives us a nonlinear model solution that depends
only on the Inrtial conditions:

x(t) = M|x(ty)]



4D-Var Implementation

This gives us a nonlinear model solution that depends only on the initial
conditions: x(t) = M[x(t,)]

where M s the time integration of the numerical scheme from the Initial
condition to time t.

A small perturbation 8x(t) can be added to X(t) such that:

M|x(t,) + 6x(ty)] = M|x(ty)] + aa—IZSX(tO) + 0[6x(ty)?]

Mx(t,) + 6x(ty)] = x(t) + 6x(t) + 0[6x(ty)?]
At any given time, the linear evolution of the small perturbation x(t)
will be given by:
% - %‘& TLM in differential form

ts solution between the initial time to final time can be obtained by
integrating the TLM in time:

0x(t) = M(t,, t) 6x(ty)
oM

where M(t,,t) = e s known as the resolvent or propagator of the TLM

't propagates an Initial perturbation at time 1o into the final perturbation at
time t.



4D-Var Implementation

M
TLM: Mg, t) = %_X

Because i1t Is linearized over the flow from to to t, it depends on the basic
trajectory X(t) (the solution of the nonlinear model) but it does not
depend on the perturbations §x(t).

The adjoint of an operator M is defined by the property
(x, My) = (M"x,y)

In the case of a model with real variables, the adjoint of the tangent
linear model M(¢,,t) is simply the transpose of the tangent linear
model.



4D-Var Implementation

oM
M(ty, t) = 7=

In the case of a model with real variables, the adjoint of the tangent linear
model M(t,,t) Is simply the transpose of the tangent linear model.

Now assume that we separate the interval (1o, t) Into two successive time
intervals, say:to <t <t

M(to,t) = M(ty, t)M(to, t1)

Since the adjoint of the tangent linear model Is the transpose of the TLM,
the property of the transpose of a product is also valid:

MT (to,t) = MT(t,, t,) MT (t4,t)

RIS ics  that the TLM can be cast as a product of [EMSRidEkEE
corresponding to short integrations. This also shows that the adjoint of the
model can also be separated the same way but they are executed

backwards in time starting from the last time step and ending with the first
e step.



4D-Var Implementation

Why do we need the adjoint!



Looking back

4D-Var can be seen to be an rterative algorithm. For iteration, I, we
will:

|. Run the nonlinear model with initial conditions, X;
et 10 Ly

2. Compute the cost, J(x§).

L e v
J(x0) = E(Xf) = s I ) (6% =54, +§Z(Hk(xk) —v)T R (He (k) — yi)



Looking back

4D-Var can be seen to be an rterative algorithm. For iteration, I, we
will;

|. Run the nonlinear model with initial conditions, X;
@Mty to tx

2. Compute the cost, J(xg ).
- - 1%
J(xh) = = (b = x8)" (P2) ™" (x5 = x8) +5 > (He(xi0) = ¥ (R)™ (Hie(xi) = )

3. Compute the gradient with respect to the initial state, VJ(x}) = 4o
to find out the direction of steepest descent(using the adjoint)

A = Hp (Rg) 1 (Hg (Xg) — ¥2)
}\k — M£Ak+1 + H]T;(Rk)_l(Hk(Xk) T YIg)
Ao = M, + HE (Ro)~L(Ho (Xo) — y&) + (P2) 7 (x — x2)




4D-Var Implementation

4D-Var can be seen to be an rterative algorithm. For iteration, I, we
will;

|. Run the nonlinear model with initial conditions, X4
f@MneE, O tx

2. Compute the cost, J(x§).

3. Compute the gradient with respect to the initial state, VI(x5) = 4o
to find out the direction of steepest descent (using the adjoint).

4. Choose the descent direction, d* based on the direction of
steepest descent, and choose a step size, at.

For our case, we can use Newton's method (or quasi-Newton'’s
method: al =1, di = V—zj(xa)vxaj



Steepest descent Is the product of inverse Hessian and the gradient
of the cost function:

at =1, d'=V"?J(xq)V,iJ
Or,
di =V-2](x}) A

The inverse hessian, V72J(x}) is typically approximated for

non-scalar system by simply perturbing the gradient and take the
finite difference between perturbed gradient and unperturbed
oradient. [ he Hessian will be:

72 () = 5[0 (xh + 61) — V) (x5)

where § Is a perturbation constant.



4D-Var Implementation

4D-Var can be seen to be an rterative algorithm. For iteration, I, we
will;

|. Run the nonlinear model with initial conditions, X4
f@MneE, O tx

2. Compute the cost, J(x§).

3. Compute the gradient with respect to the initial state, VI(x5) = 4o
to find out the direction of steepest descent (using the adjoint).

4. Choose the descent direction, d* based on the direction of
steepest descent (use Newton's method to find inverse Hessian,

V=2 (%) ).
5. Modify the initial state: x57" = xg — atd"

B -V x4

when using Newton's method: iteration, i=1, & at=1 .



4D-Var Implementation

4D-Var can be seen to be an rterative algorithm. For iteration, I, we
will;

|. Run the nonlinear model with initial conditions, X4
f@MneE, O tx

2. Compute the cost, J(x§).

3. Compute the gradient with respect to the initial state, VI(x5) = 4o
to find out the direction of steepest descent (using the adjoint).

4. Choose the descent direction, d* based on the direction of
steepest descent (use Newton's method to find inverse Hessian,

V=2 (x0) ).
5. Modify the initial state: x5t = xf — V2] (x}) 4,

6. Calculate the analysis for by running the nonlinear model
with updated Initial condrtions.




