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Data Assimilation (DA) Perspectives:

– “interpolating fields for 
subsequent use as initial data in 
a model integration” (Bennett, 
2002)

– “statistical combination of 
observations and short-range 
forecasts” (Kalnay, 2003)

– “using all the available 
information, to define as 
a c c u r a t e a s p o s s i b l e t h e 
state” (Talagrand, 1997)

– “incorporating data into the 
law” (Lewis et al., 2006)



“process by which 
observations are incorporated 
into a computer model of a 

real system” (Wikipedia)



For our purposes, Data Assimilation will 
be viewed as a method of combining 
information (whether embodied in 
observations or models). 

Fusing data (observations) with 
prior knowledge (e.g., physical 
laws, model output) to get an 
estimate of  the true state of the 
physical system. 

Statistical Perspective



Sources of Information

 observations 
(these are measurements of the system )

 models 
(understanding of the spatio-temporal 
evolution of the system)

physical constraints (moisture must be > 0)
climatology

from a point of view of information, models and observations 
are not distinct; it is the mechanism of obtaining this 

information that is distinct



while extremely useful,  these 
observations are:  

1.mostly indirect measurements of the 
state of the environment  

2.have associated errors  
3.incomplete (discrete) 
4.irregular samples

!"# = ℎ &"' + )",									)"~-(0, 0# 1)	

The true state at time k        is related to the observation through          .    !"# = ℎ &"' + )",									)"~-(0, 0# 1)	 ℎ 	
errors: random (precision), systematic (bias), representativeness 



Models on the other hand are imperfect. 
While they typically encapsulate our current 
understanding of the system, they 

1.a r e i n c o m p l e t e ( a n d d i s c r e t e ) 
representation of the system  

2.have associated errors 

!" #$%& = ($ !) #$ + +$,												+$~/(0, 23)	

where si is now in units of [molecules cm-3 s-1]. The Eulerian advective form is 
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and the Lagrangian form is 
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The transport and local terms involve a number of different processes operating in the 
model environment. The continuity equation is thus usefully represented for model 
purposes as a sum of terms describing the different processes for which the model 
provides independent formulations. For example, the Eulerian form may be decomposed 
as 
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where the terms on the right hand side represent successively the contributions of 
advection, turbulent mixing, convection, wet scavenging by precipitation, chemistry, 
emissions, and dry deposition. We describe the formulations for each of these terms in 
the following sub-sections. The Lagrangian form using the total derivative may be 
similarly decomposed but without the transport terms; a separate algorithm is needed to 
describe the Lagrangian transport of air parcels and this is also described below. 
 

4.2.2. Advection 
 
Advection describes transport by the wind resolved on the model scale. The wind 
velocity vector v is then a spatial and temporal average over the model grid and time step. 
The corresponding mass flux is ( , , ) ( , , )x y z T T

i i i i i iF F F u v wρ ρ= = =F v  Consider an 
elemental volume dV = dxdydz centered at (x, y, z), and a wind velocity component u in 
the x-direction. The corresponding mass flux for species i is ρx

i iF u=  [kg m-2 s-1]. The 
flow rate into the volume (kg s-1) is ( / 2)x

iF x dx dydz−  and the flow rate out of the 
volume is ( / 2)x

iF x dx dydz+  (Figure 4.1). The change per unit time in the concentration 
ρi within the volume is then given by  
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The evolution of the state is typically described as PDEs. e.g.,

Eq. 4.10 of Brasseur and Jacob, 2016



How do we produce a best estimate of the 
state of the Earth System given 
incomplete observations and imperfect 
models? 

How do we ensure an observationally-
constrained estimate that is at the same 
t i m e c o n s i s t e n t w i t h o u r m o d e l 
understanding?





Observations Model 
Forecast

Analyses

Data 
Assimilation

Errors

Fig 2 Lahoz et al 2010



short-range forecast measurements

corrected representation of the atmosphere



How do we combine information?



We have two measurements of temperature 
in this room (T1 and T2).

What would be our best estimate of the 
temperature (state) of this room?

Toy Example:



Mean, RMS, Variance/Covariance,  and 
Correlation
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How about an analysis from an observation and a 
model (guess) information
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Our basic analysis equation:
analysis state estimate

analysis error estimate 

weights

obs highly certain

model highly certain

average

Our best (optimal) estimate (or analysis) of the state (temperature, in our toy 
example) is a linear combination of two pieces of information (model and 
observation). The weight applied to each information is associated with its 
relative accuracy.  Our analysis is optimal since the corresponding error 
variance is minimum (i.e., it has the least mean square error). 



Variational (cost function) Approach
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Now, consider 3 pieces of information:

How do we combine the 3 pieces of information of 
temperature in this room to find our best estimate of 

temperature?

guess 1therm. 1

therm. 2



least squares

variational

sequential filter
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OK, that was easy. What if we have 2 pieces 
of information that are not in the same 
location? 



Guess and Observations at different location 
Case 1: 1 observation & 2 model guess 

1 0 2Location (Grid)
model 

&analysis 
grid

Obs 1

Consider the case where the observation (To,1) is 
located at different location (say, the other room). 
We want to find our best estimate of the temperature 
in this room given our first guess (model) of the 
temperature (Tb,0 Tb,1) in both rooms.
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x1 x2 x3

x4 x5 x6

x7 x8 x9

i-axis ba
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xis
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y1 

y2 
y3 

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

j-a
xis

i-axis

l=(j-1)ni+i
x = (x1, x2, .. xl, .. xn)T
Unknown States

yo = (y1o, y2o, ...  ymo)T
Observations
xb = (x1b, x2b, .. xlb, .. xnb)T

Background States



Observations are in general, different from the modeled 
state variables by: a) being located in different points and 
b) possibly being indirect measures of the modeled state 
variables.

! = !"+ !!
H i s t h e f o r w a r d 
observational operator that 
converts the background 
field into ‘first guess of the 
observations’. H can be 
non l inear (or ju s t an 
interpolation operator). The 
innovation (obs increment) 
is ! = !! − !! = !! − !!! !



!− !! =! !! − !!! − ! =!!− !!

! = E !!! = !!! =
!!!! !!!! ⋯ !!!!
!!!! !!!! ⋯ !!!!
⋮ ⋮ ⋮

!!!! !!!! ⋯ !!!!
!

! = !! − !! = !! − !!! ! ! = !− !!Let and
Similar to our previous examples, we find a weight matrix W such 
that our estimate minimizes the mean square error

! =
!!
!!
⋮
!!

! !! = !! !! ⋯ !! !

An error covariance matrix is obtained by multiplying a vector 
error by its transpose

and averaging over many cases to obtain the expected value:

This matrix is symmetric and positive definite. The diagonal 
elements are the variances of the vector error components

!!!! = !!!!



If we normalize the covariance matrix, dividing each component by 
the product of the standard deviations: !!!! !!!! = !"## !! , !! = !!" !

we obtain a correlation matrix:
! =

1 !!" ⋯ !!!
!!" 1 ⋯ !!!
⋮ ⋮ ⋮
!!! !!! ⋯ 1

!

and if ! =
!!! 0 ⋯ 0
0 !!! ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ !!!

!

is the diagonal matrix of the variances, then we can write

! = !!/!!!!/!!



Statistical Assumptions
!! !, ! = !! !, ! − ! !, ! !
! !, ! = ! !, ! − ! !, ! !

!!" = !! !! − ! !! = !! !! − !! !! !
We do not know the truth x, thus we do not know the errors of 
the available background and observations. But we can make a 
number of assumptions about their statistical properties. The 
background and observations are assumed to be unbiased.

! !! !, ! = ! !! !, ! − ! ! !, ! = 0!
! !! !! = ! !! !! − ! ! !! = 0!

If the forecasts (background) and the observations are biased, in 
principle we can and should correct the bias before proceeding. 
The bias can also be estimated as part of the analysis (Dee and 
Da Silva (1998).



Statistical Assumptions

! = !! = ! !!! , !! = ! = ! !!!!! ,!!!!!!!! = ! = ! !!!!! !!

The nonlinear observation operator H that transforms model state 
variables into observed variables can be linearized as:

! !+ !! = ! ! + !!!!
where H is a pxn matrix denoting the linear observation operator 
with elements ℎ!,! = !!! !!! !
We also assume that the background (usually a model forecast) is 
a good approximation of the truth, so that the analysis and the 
observations are equal to the background values plus small 
increments. That is, 

! = !! − !! = !! − ! !+ !! − ! !
! = !! − ! ! − ! !! − ! = !! − !!! !

! !!!!! = 0!



The solution to this problem (least squares) is:

! = !!! !+ !!!! !! !
! = !! −!! !!

! = !! +! !! − !!! !

!! = !! + !! !! − !! !
Recall:

!! =
!!!

!!! + !!!
!

Toy Example 1:

Toy Example 2: !! = !! + ! ! − ℎ !! !

! = !!!!
!!!!! + !!!

= !!! !!
!!! ! + !!!!



! = !! +! !! − !!! !

n-vector prior (first 
guess/background)

p-vector 
observations

p-vector 
expected 

observations

n-vector posterior 
(analysis)

nxp weight matrix (gain matrix)

!

innovation (obs increment)

!

analysis increment



! = !!! !+ !!!! !! !

! = !! +! !! − !!! !

pxp observation error 
covariance

pxp expected 
observation error 

covariance
n x p e r r o r 
c o v a r i a n c e 
b e t w e e n 
b a c k g r o u n d 
and expected 
observation



! = !!! !+ !!!! !! !
! = !! +! !! − !!! !

! = !!! !"!! !! !"!! !+ !"!! !! !
regression

(map to model space)
ratio of model error 

to total error
(shrink in obs space)
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where si is now in units of [molecules cm-3 s-1]. The Eulerian advective form is 
 

 i i
i

a

C sC
t n

∂
+ ⋅ =

∂
v ∇  (4.8) 

 
and the Lagrangian form is 

 

 i i

a

dC s
dt n

=   (4.9) 

 
 
The transport and local terms involve a number of different processes operating in the 
model environment. The continuity equation is thus usefully represented for model 
purposes as a sum of terms describing the different processes for which the model 
provides independent formulations. For example, the Eulerian form may be decomposed 
as 

 

 
ρ ρ ρ ρ ρ ρ ρ ρi i i i i i i i

adv mix conv scav chem em dept t t t t t t t
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ª º ª º ª º ª º ª º ª º ª º= + + + + + +« » « » « » « » « » « » « »∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

 (4.10) 

 
where the terms on the right hand side represent successively the contributions of 
advection, turbulent mixing, convection, wet scavenging by precipitation, chemistry, 
emissions, and dry deposition. We describe the formulations for each of these terms in 
the following sub-sections. The Lagrangian form using the total derivative may be 
similarly decomposed but without the transport terms; a separate algorithm is needed to 
describe the Lagrangian transport of air parcels and this is also described below. 
 

4.2.2. Advection 
 
Advection describes transport by the wind resolved on the model scale. The wind 
velocity vector v is then a spatial and temporal average over the model grid and time step. 
The corresponding mass flux is ( , , ) ( , , )x y z T T

i i i i i iF F F u v wρ ρ= = =F v  Consider an 
elemental volume dV = dxdydz centered at (x, y, z), and a wind velocity component u in 
the x-direction. The corresponding mass flux for species i is ρx

i iF u=  [kg m-2 s-1]. The 
flow rate into the volume (kg s-1) is ( / 2)x

iF x dx dydz−  and the flow rate out of the 
volume is ( / 2)x

iF x dx dydz+  (Figure 4.1). The change per unit time in the concentration 
ρi within the volume is then given by  

 

 
( ) ( ) ( )2 2 ρρ x x x

i i ii i

adv

F x dx F x dx dydz uF
t dxdydz x x
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General Problem: Given a set of observations and a 
model of some physical parameters, what does 
knowledge of the observations tell us about the model 
state?
Let x be n-vector of model state and y be p-vector of  
observations. The information we want to know is given 
by the conditional pdf, p(x|y).

p ! ! = p ! ! p(!)
p(!) !

In practice, it is difficult to obtain p(x|y). Typically, we find 
attributes of p(x|y) which can help us estimate x.



Prior

Observation

Posterior

HTR-1H

P

µ

P!



x

prob

obs likelihood  
p(y|x)~N(y|x,σo2)

prior  
p(x)~N(xb,σb2)

posterior  
p(x|y) = a p(x)p(y|x) ~N(xa, σa2)

xb ‘y’
xa

maximize p(x|y) to find xa

bayesian inference



! ! ~! 20,3 !



! ! ~! 20,3 !

! !|! ~! 21,2 !



! ! ~! 20,3 !

! !|! ~! 21,2 !

! !|! ~! 20.6,1.2 !

! = ! ! ! = !!! ! ! !"
!

!!
!

!! = !"# ! ! = ! − ! !!! ! ! !"
!

!!
!



Let x be n-vector of model state and y be p-vector of  
observations with error   .  We assume that:

!!~!! !,! !
!!

!!~!! !,! !
! = !"+ !!

p ! ! = p ! ! p(!)
p(!) !

! ! = 1
2!!/!|!|!/! !"# − 12 !− ! !!!! !− ! !

! !|! = 1
2!!/!|!|!/! !"# − 12 !− !! !!!! !− !! !

! ! = 1
2!!/!|!!!! + !|!/! !"# − 12 !− !! ! !!!! + ! !! !− !! !



! !|! = |!!!! + !|!/!
2!!/!|!|!/!|!|!/! !"# − 12 ! !

p ! ! = p ! ! p(!)
p(!) = ! !",! ! !,!

! !!,!!!! + ! = ! !,!! !

!! = ! !− ! ! = !!! + !!!!!! !! !
! = ! ! ! = !! !!!!!!+ !!!! !

And so using completing squares, we arrive at a solution of our 
estimator:

! = !− ! !!!! !− ! + ! !− !" !!!! !− !" − !− !! ! !!!! + ! !! !− !! !
where

! !|! = |!!!! + !|!/!
2!!/!|!|!/!|!|!/! !"# − 12 !− ! !!!!! !− ! !

we also know,



Note the similarity of these estimates to our 
estimates using the least squares approach

! = ! ! ! = !! !!!!!!+ !!!! !
!! = ! !− ! ! = !!! + !!!!!! !! !

Toy Example 1:

!! = !!!
1
!!! !! +

1
!!!
!! ,!!!!!!!!! =

1
!!! +

1
!!!

!!
!

Toy Example 2:

!! = !!!
!
!!! !! +

1
!!!
!! ,!!!!!!!!! =

!!

!!! +
1
!!!

!!
!



This is also similar to:

!! = ! !− ! ! ! ! = !−!"! !"!! + ! !!!" = !− !! !!

! = ! ! ! = !+ !!! !"!! + ! !! !− !" = !+ ! !− !" !

Toy Example 1:

!! = !! +! !! − !! ,!!!!!!!!! = 1−! !!! , ! = !!!
!!! + !!!

!

Toy Example 2:

!! = !! + ! !! − ℎ(!!)! ,!!!!!!!!!!! = 1− !" !!!!!!!!!! = !!!!
!!! + !!!!!

!



equivalent to finding the minimum of -ln{p(x|y)}

! = !− ! !!!! !− ! + ! !− !" !!!! !− !" − !− !! ! !!!! + ! !! !− !! !



x

cost

variational method

minimize J(x) to find xa

‘y’xb xa

!! ! = !
!
!− !! !

!!!
! !! ! = !

!
!− ! !

!!! !

! ! = !! ! + !! ! !

obsforecast

analysis



! = !− ! !!!! !− ! + !− !" !!!! !− !" + !− !" ! !"!! + ! !! !− !" !

This is similar to what we did earlier (variational approach):

!!!!!!+ !!! !!− !!!!!!+ !!!! = !!

! = !!!!!!+ !!! !! !!!!!!+ !!!! !

We find our estimate by minimizing the cost function and 
equate to zero  

We can also approximate the error covariance of the estimate by 
taking the Hessian or second partial derivative:

!!
!! = !!! !− ! − !!!!! !− !" = !!

!!!
!!! = !!! + !!!!!!!

!! = !!! + !!!!!! !! !



This is also similar to our one obs + 2 model guesses example:

1 0Location (Grid)
model &analysis gridObs 1

Tb,1 Tb,0To,1 Ta,0

!!,! = 0 1 !!,!
!!,! + !!,! ! !! = 0 1 !!

!! + !! !or

!! ,!
!! ,! = !!,!

!!,! + !! ,!
!! ,! ! or

!!
!! = !!

!! + !!
!! !

more generally,
! = !"+ !,!!!! = ! !!! = σ!! !

! = !!+ !,!!!! = ! !!! = σ! ,!! ρ!,!!! ,!!! ,!
ρ!,!!! ,!!! ,! σ! ,!!

= σ!!
1 ρ!,!
ρ!,! 1 !



! = !+ !!! !"!! + ! !! !− !" !
Our estimates are given as:

!!
!! = !!

!! + !!! !"!! + ! !! !! − 0 1 !!
!! !

!!! = σ!!
1 ρ!,!
ρ!,! 1

0
1 = σ!!

ρ!,!
1 !

!"!! + ! = 0 1 !σ!!
ρ!,!
1 + σ!! = σ!! + σ!! !

!!! !"!! + ! !! = σ!!
ρ!,!
1 σ!! + σ!! !!!

!! = !! +
ρ!,!σ!!
σ!! + σ!!

!! − !! !

where

!!
!! = !!

!! + σ!!
ρ!,!
1 σ!! + σ!! !! !! − !! !

and so

!! = !! +
σ!!

σ!! + σ!!
!! − !! !and

!! ,! = !! ,! +
!!,!!!!
!!! + !!!

!!,! − !! ,! ! and !! ,! = !! ,! +
!!!

!!! + !!!
!!,! − !! ,! !



Again, this is similar to:

!! = !! +
!
!!!

!
!!!
+ !

!!!
!! − !! !

! = ! ! ! = !+ !!!!!!+ !!! !!!!!!! !− !" = !+ ! !− !" !

Toy Example 1:

Toy Example 2:

!! = !! +
!
!!!

!!
!!!
+ !

!!!
!! − ℎ(!!) !



!! = !−!"! !"!! + ! !!!" = !− !! !!
The corresponding error covariance of our estimates is given as:

!! = σ!!
σ!!

= σ!!
1 ρ!,!
ρ!,! 1 − σ!!

ρ!,!
1 σ!! + σ!! !! 0 1 σ!!

1 ρ!,!
ρ!,! 1 !

!! = σ!!
σ!!

= σ!!
1 ρ!,!
ρ!,! 1 − σ!! σ!! + σ!! !!σ!!

ρ!,!
1 ρ!,! 1 !

!! = σ!!
σ!!

= σ!!
1 ρ!,!
ρ!,! 1 − !!!

!!! + !!!
ρ!,!! ρ!,!
ρ!,! 1 !

And so the error variance of our estimates are:

σ!! = σ!! 1− !!,!!!!!
!!! + !!!

! σ!! = σ!! 1− !!!
!!! + !!!

!and

!! ,!! = !!! 1− !!,!!!!!
!!! + !!!

! and !! ,!! = σ!! 1− !!!
!!! + !!!

!



Let’s do a Gallery Walk.
Bayesed and Confused



Group yourselves into 1 or more (need 6 groups)
Groups 1 to 3 will work on the left side (4 to 6 on the right 
side)
Your task: Give your best description (or better yet identify)  
what is the picture in the poster all about. write it down 
(1-3 minutes)
Indicate the level of uncertainty of your description/
identification) by annotating with stars 
 1 star = Have no idea 
 2 star = Hmm, looks familiar  
 3 star = Gotcha 
Go to another poster and do the same (but now taking into 
account the added information from the previous group) 
After you have gone through all 3 posters, assign a reporter 
from your group.  He/She will report your description/
identification of the picture.





(2) Incomplete Guess, Noisy (large errors) & Complete 
Observations  

___________ captured this stunning visible image of 
__________ at 8:32 a.m. EDT, just 28 minutes before Irene's 

landfall in New York City.



The GOES-13 satellite captured this stunning visible image 
of Hurricane Irene at 8:32 a.m. EDT, just 28 minutes before 

Irene's landfall in New York City.

http://www.nasa.gov/mission_pages/hurricanes/archives/2011/h2011_Irene.html

(2) Incomplete Guess, Noisy (large errors) & Complete 
Observations  

http://www.atmo.arizona.edu/index.php?section=people&id=students


(3) Somewhat ‘Accurate’ & ‘Complete’ Guess, Noisy (large 
errors) & Somewhat Few Observations  



(3)
The Starry Night vibrates with rockets of burning yellow while 
planets gyrate like cartwheels. The hills quake and heave, yet the 
cosmic gold fireworks that swirl against the blue sky are somehow 
restful.

http://www.ibiblio.org/wm/paint/auth/gogh/starry-night/

Somewhat ‘Accurate’ & ‘Complete’ Guess, Noisy (large 
errors) & Somewhat Few Observations  

http://www.atmo.arizona.edu/index.php?section=people&id=students


(4) Wrong Guess, Noisy (low errors) & Few Observations  

Nadal cruises to straight-set win at US Open 



(4)

http://www.boston.com/sports/other-sports/tennis/2013/08/27/djokovic-cruises-straight-set-win-
open/1hDa8MfxY2UOv2rATqI0XK/story.html

Djokovic cruises to straight-set win at US Open 

Wrong Guess, Noisy (low errors) & Few Observations  

http://www.atmo.arizona.edu/index.php?section=people&id=students


(5)
Images of the _____ flood.  A woman near _________ 

Creek.

Incomplete Guess, Noisy (low errors) & Few Observations  



(5)
Images of the Colorado flood.  A woman near __Boulder_ 

Creek.

Incomplete Guess, Noisy (low errors) & Few Observations  



(1) No Guess, Noisy (large errors) & Few Observations  



(1) No Guess, Noisy (large errors) & Few Observations  

Arthur Mizzi
Project Scientist

http://www.acom.ucar.edu/cgi-bin/acd/pictureBoard.py

http://www.acom.ucar.edu/cgi-bin/acd/pictureBoard.py


Ingredients of a Kalman Filter

A discrete process model 
 change in state over time
 linear difference equation

A discrete measurement model 
 relationship between state and measurement
 linear function

 Noise Characteristics
 process noise
 measurement noise



Gelb (1974)

where si is now in units of [molecules cm-3 s-1]. The Eulerian advective form is 
 

 i i
i

a

C sC
t n

∂
+ ⋅ =

∂
v ∇  (4.8) 

 
and the Lagrangian form is 

 

 i i

a

dC s
dt n

=   (4.9) 

 
 
The transport and local terms involve a number of different processes operating in the 
model environment. The continuity equation is thus usefully represented for model 
purposes as a sum of terms describing the different processes for which the model 
provides independent formulations. For example, the Eulerian form may be decomposed 
as 

 

 
ρ ρ ρ ρ ρ ρ ρ ρi i i i i i i i

adv mix conv scav chem em dept t t t t t t t
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ª º ª º ª º ª º ª º ª º ª º= + + + + + +« » « » « » « » « » « » « »∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

 (4.10) 

 
where the terms on the right hand side represent successively the contributions of 
advection, turbulent mixing, convection, wet scavenging by precipitation, chemistry, 
emissions, and dry deposition. We describe the formulations for each of these terms in 
the following sub-sections. The Lagrangian form using the total derivative may be 
similarly decomposed but without the transport terms; a separate algorithm is needed to 
describe the Lagrangian transport of air parcels and this is also described below. 
 

4.2.2. Advection 
 
Advection describes transport by the wind resolved on the model scale. The wind 
velocity vector v is then a spatial and temporal average over the model grid and time step. 
The corresponding mass flux is ( , , ) ( , , )x y z T T

i i i i i iF F F u v wρ ρ= = =F v  Consider an 
elemental volume dV = dxdydz centered at (x, y, z), and a wind velocity component u in 
the x-direction. The corresponding mass flux for species i is ρx

i iF u=  [kg m-2 s-1]. The 
flow rate into the volume (kg s-1) is ( / 2)x

iF x dx dydz−  and the flow rate out of the 
volume is ( / 2)x

iF x dx dydz+  (Figure 4.1). The change per unit time in the concentration 
ρi within the volume is then given by  

 

 
( ) ( ) ( )2 2 ρρ x x x

i i ii i

adv

F x dx F x dx dydz uF
t dxdydz x x

ª º− − + ∂∂ ∂ª º ¬ ¼= = −« »∂ ∂ ∂¬ ¼
 =  −

 
  (4.11) 
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Eq. 4.10 of Brasseur and Jacob, 2016
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Information Filter in a Nutshell
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Variational Data Assimilation

A class of assimilation algorithms in which the field to be 
estimated are explicitly determined as minimizers of a scalar 
function, called, objective or cost function, that measure the 
misfit to the available data.

We can construct an objective function of the form:

! ! = 1
2 !− !! ! !! !! !− !! + 12 !(!)− !! ! ! !! !(!)− !! = !! + !! !

which measure the deviation of our state from the prior 
(background) information and the deviation from the 
observation.  Our estimate of the state,       can be 
derived by minimizing the cost function, 

!! !
∇!!! !! = 0!



Data assimilation concepts and methods

Meteorological Training Course Lecture Series

! ECMWF, 2002 31

Figure 11. Schematic representation of the variational cost-function minimization (here in a two-variable model
space): the quadratic cost-function has the shape of a paraboloid, or bowl, with the minimum at the optimal

analysis . The minimization works by performing several line-searches to move the control variable to areas
where the cost-function is smaller, usually by looking at the local slope (the gradient) of the cost-function.

In practice, the initial point of the minimization, or first guess, is taken equal to the background . This is not
compulsory, however, so it is important to distinguish clearly between the terms background (which is used in the
definition of the cost function) and first guess (which is used to initiate the minimization procedure). If the mini-
mization is satisfactory, the analysis will not depend significantly on the choice of first guess, but it will always be
sensitive to the background.

A significant difficulty with 3D-Var is the need to design a model for that properly defines background error
covariances for all pairs of model variables. In particular, it has to be symmetric positive definite, and the back-
ground error variances must be realistic when expressed in terms of observation parameters, because this is what
will determine the weight of the observations in the analysis.

The popularity of 3D-Var stems from its conceptual simplicity and from the ease with which complex observation
operators can be used, since only the operators and the adjoints of their tangent linear need to be provided23. Weak-
ly non-linear observation operators can be used, with a small loss in the optimality of the result. As long as is
strictly convex, there is still one and only one analysis.

In most cases the observation error covariance matrix is block-diagonal, or even diagonal, because there is no
reason to assume observation error correlations between independent observing networks, observing platforms or
stations, and instruments, except in some special cases. It is easy to see that a block-diagonal implies that

23.  whereas OI requires a background error covariance model between each observed variable and each model variable.
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Graphically for n=2, the geometry of the minimization of the cost 
function term for the background state is:

The minimization works by performing several line-searches to move the 
control variable to areas where the cost-function is smaller, usually by 
looking at the local slope (the gradient) of the cost-function.



The objective function :

Minimization of the cost function will define the initial condition of the 
model solution that fits the data most closely. Following Sasaki (1970), this is 
called strong constraint four-dimensional variational assimilation (4D-Var).
If we consider the model error, we have the following objective function to 
minimize:

Minimizing this cost function where the model equations are present as 
noisy data to be fitted by the analysed fields like any other data is called 
weak constraint 4D-Var.

! !! = 1
2 !! − !!!

! !!!
!! !! − !!! + 12 !!(!!)− !!! !

!

!!!
!! !! !!(!!)− !!! !

! !! = 1
2 !! − !!!

! !!!
!! !! − !!! + 12 !!(!!)− !!! !

!

!!!
!! !! !!(!!)− !!! !

+ 12 !!!! −!!(!!) !
!!!

!!!
!! !! !!!! −!!(!!) !



4D-Var minimizes the misfit between a temporal sequence of model states 
and the observations that are available over a given assimilation window. In 
contrast to Kalman filter (and to sequential algorithms), it propagates the 
information contained in the data both forward and backward in time.

The general idea behind 4D-Var is to find the initial conditions which lead to 
the best fit to observations which are spread over a time interval.  The 
notion of ‘best’ is defined by a scalar cost function.

Find the initial state which produces a model trajectory (when integrated in 
time using the forecast model) that ‘best’ fits the observations.

! !! = 1
2 !! − !!!

! !!!
!! !! − !!! + 12 !!(!!)− !!! !

!

!!!
!! !! !!(!!)− !!! !
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My Own Final Thoughts

A data assimilation person:

is a HPC (computing) ‘hog’ 
‘abuses’ the data 
thinks the model is wrong but 
‘blames’ the data anyway 
has the ‘constitutional’ right to 
change the model and/or data but is 
very conservative about change 
must do everything right — the 
devil is in the details 
pretends to know the truth 



Some References



http://www.condenaststore.com

“Ave, may i go home? I can’t 
assimilate any more data today.”

http://www.condenaststore.com


EXTRA SLIDES



4D-Var Implementation

! !! = 1
2 !! − !!!

! !!!
!! !! − !!! + 12 !!(!!)− !!! !

!

!!!
!! !! !!(!!)− !!! !

Given a scalar cost function

we want to find an estimate of      that minimizes the cost function. !!!



Data assimilation concepts and methods

Meteorological Training Course Lecture Series

! ECMWF, 2002 31

Figure 11. Schematic representation of the variational cost-function minimization (here in a two-variable model
space): the quadratic cost-function has the shape of a paraboloid, or bowl, with the minimum at the optimal

analysis . The minimization works by performing several line-searches to move the control variable to areas
where the cost-function is smaller, usually by looking at the local slope (the gradient) of the cost-function.

In practice, the initial point of the minimization, or first guess, is taken equal to the background . This is not
compulsory, however, so it is important to distinguish clearly between the terms background (which is used in the
definition of the cost function) and first guess (which is used to initiate the minimization procedure). If the mini-
mization is satisfactory, the analysis will not depend significantly on the choice of first guess, but it will always be
sensitive to the background.

A significant difficulty with 3D-Var is the need to design a model for that properly defines background error
covariances for all pairs of model variables. In particular, it has to be symmetric positive definite, and the back-
ground error variances must be realistic when expressed in terms of observation parameters, because this is what
will determine the weight of the observations in the analysis.

The popularity of 3D-Var stems from its conceptual simplicity and from the ease with which complex observation
operators can be used, since only the operators and the adjoints of their tangent linear need to be provided23. Weak-
ly non-linear observation operators can be used, with a small loss in the optimality of the result. As long as is
strictly convex, there is still one and only one analysis.

In most cases the observation error covariance matrix is block-diagonal, or even diagonal, because there is no
reason to assume observation error correlations between independent observing networks, observing platforms or
stations, and instruments, except in some special cases. It is easy to see that a block-diagonal implies that

23.  whereas OI requires a background error covariance model between each observed variable and each model variable.
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Graphically for n=2, the geometry of the minimization of the cost 
function term for the background state is:

The minimization works by performing several line-searches to move the 
control variable to areas where the cost-function is smaller, usually by 
looking at the local slope (the gradient) of the cost-function.



4D-Var Implementation
4D-Var can be seen to be an iterative algorithm. For iteration, i, we 
will:

!!! !1.  Run the nonlinear model with initial conditions,        
     from      to !!! !! !
2. Compute the cost,          .! !!! !
3. Compute the gradient with respect to the initial state,          to
   find out the direction of steepest descent. 

∇!!! !!

4. Choose the descent direction,       based on the direction of    
   steepest descent, and choose a step size,     .

!! !
!! !

5. Modify the initial state: !!!!! = !!! − !!!! !
The iteration is continued until the minimum of the cost function is 
found.



4D-Var Implementation
!!! !1.  Run the nonlinear model with initial conditions,        

     from      to !!! !! !
!!!! = !! !! !

Typically, we have a nonlinear model which is written as a set of N nonlinear 
coupled ODEs 

!!
!! = !(!)! ! =

!!
⋮
!!

,! =
!!
⋮
!!

!!

Once we choose a time-difference scheme, it becomes a set of nonlinear 
coupled difference equations (e.g. Crank-Nicholson)

!!!! = !! + Δ!! !! + !!!!
2 !

A numerical solution starting from an initial time can be readily obtained by 
integrating the model numerically between the initial time and a final time 
(‘running the model’). This gives us a nonlinear model solution that depends 
only on the initial conditions:

!(!) = ! !(!!) !



4D-Var Implementation

!(!) = ! !(!!) !
This gives us a nonlinear model solution that depends only on the initial 
conditions:
where       is the time integration of the numerical scheme from the initial 
condition to time t.

!!

A small perturbation            can be added to          such that: !!(!)! !(!)!
! ! !! + !!(!!) = ! !(!!) + !!!! !! !! + ![!! !! !]!
! ! !! + !!(!!) = !(!)+ !!(!)+ ![!! !! !]!

At any given time, the linear evolution of the small perturbation !!(!)!
will be given by: !!!

!" = !!
!! !!! TLM in differential form

Its solution between the initial time to final time can be obtained by 
integrating the TLM in time:

!! ! = ! !! , ! !!! !! !
where                        is known as the resolvent or propagator of the TLM! !! , ! = !!

!! !
It propagates an initial perturbation at time t0 into the final perturbation at 
time t.



4D-Var Implementation

Because it is linearized over the flow from t0 to t, it depends on the basic 
trajectory        (the solution of the nonlinear model) but it does not 
depend on the perturbations          .

!(!)!
!!(!)!

The adjoint of an operator      is defined by the property  !!
!,!! = !!!, ! !

In the case of a model with real variables, the adjoint of the tangent 
linear model               is simply the transpose of the tangent linear 
model.

! !! , ! !

! !! , ! = !!
!! !TLM:



4D-Var Implementation

! !! , ! = !!
!! !

In the case of a model with real variables, the adjoint of the tangent linear 
model               is simply the transpose of the tangent linear model.! !! , ! !
Now assume that we separate the interval (t0, t) into two successive time 
intervals, say: t0 < t1 < t

! !! , ! = ! !! , ! ! !! , !! !
Since the adjoint of the tangent linear model is the transpose of the TLM, 
the property of the transpose of a product is also valid:

!! !! , ! = !! !! , !! !! !! , ! !
This shows that the TLM can be cast as a product of TLM matrices 
corresponding to short integrations. This also shows that the adjoint of the 
model can also be separated the same way but they are executed 
backwards in time starting from the last time step and ending with the first 
time step.



4D-Var Implementation

Why do we need the adjoint?



Looking back
4D-Var can be seen to be an iterative algorithm. For iteration, i, we 
will:

!!! !1.  Run the nonlinear model with initial conditions,        
     from      to !!! !! !
2. Compute the cost,          .! !!! !

! !!! = 1
2 !!! − !!!

! !!!
!! !!! − !!! + 12 !!(!!)− !!! !

!

!!!
!! !! !!(!!)− !!! !



Looking back
4D-Var can be seen to be an iterative algorithm. For iteration, i, we 
will:

!!! !1.  Run the nonlinear model with initial conditions,        
     from      to !!! !! !
2. Compute the cost,          .! !!! !

3. Compute the gradient with respect to the initial state,         
   to find out the direction of steepest descent(using the adjoint)

λ! = !!
! !! !! !!(!!)− !!! !

λ! = !!
!λ!!! + !!

! !! !! !!(!!)− !!! !
λ! = !!

!λ! + !!
! !! !! !!(!!)− !!! + !!!

!! !!! − !!! !

! !!! = 1
2 !!! − !!!

! !!!
!! !!! − !!! + 12 !!(!!)− !!! !

!

!!!
!! !! !!(!!)− !!! !

∇! !!! = !!!!!



4D-Var Implementation
4D-Var can be seen to be an iterative algorithm. For iteration, i, we 
will:

4. Choose the descent direction,       based on the direction of    
   steepest descent, and choose a step size,     .

!! !
!! !

For our case, we can use Newton’s method (or quasi-Newton’s 
method: !! = 1, !! = ∇!!! !!! ∇!!! !!

!!! !1.  Run the nonlinear model with initial conditions,        
     from      to !!! !! !
2. Compute the cost,          .! !!! !
3. Compute the gradient with respect to the initial state,         
   to find out the direction of steepest descent (using the adjoint). 

∇! !!! = !!!!!



!! = 1, !! = ∇!!! !!! ∇!!! !!

Steepest descent is the product of inverse Hessian and the gradient 
of the cost function: 

!!!!!!! = ∇!!! !!! !!!!!
Or,

The inverse hessian, ∇!!! !!! ! is typically approximated for
non-scalar system by simply perturbing the gradient and take the 
finite difference between perturbed gradient and unperturbed 
gradient. The Hessian will be:

where      is a perturbation constant. 

∇!! !!! = 1
! ∇! !!! + !! − ∇! !!! !

!!



4D-Var Implementation
4D-Var can be seen to be an iterative algorithm. For iteration, i, we 
will:

5. Modify the initial state: !!!!! = !!! − !!!! !
!!!!! = !!! − ∇!!! !!! !!!!!

when using Newton’s method: 

!!! !1.  Run the nonlinear model with initial conditions,        
     from      to !!! !! !
2. Compute the cost,          .! !!! !
3. Compute the gradient with respect to the initial state,         
   to find out the direction of steepest descent (using the adjoint). 
4. Choose the descent direction,       based on the direction of    
   steepest descent (use Newton’s method to find inverse Hessian,

!! !

∇! !!! = !!!!!

∇!!! !!! !).

! = 1, !! = 1!&            .iteration,



4D-Var Implementation
4D-Var can be seen to be an iterative algorithm. For iteration, i, we 
will:

!!! !1.  Run the nonlinear model with initial conditions,        
     from      to !!! !! !
2. Compute the cost,          .! !!! !
3. Compute the gradient with respect to the initial state,         
   to find out the direction of steepest descent (using the adjoint). 
4. Choose the descent direction,       based on the direction of    
   steepest descent (use Newton’s method to find inverse Hessian,

!! !

5. Modify the initial state: !!!!! = !!! − ∇!!! !!! !!!!!
6. Calculate the analysis for by running the nonlinear model   

with updated initial conditions.

∇! !!! = !!!!!

∇!!! !!! !).


