

Canada

ASP Colloquium: AIR QUALITY FORECASTING - CANADA

V.Bouchet,

Director, CMC National Operations, Environment Canada Chair, GURME – GAW URban Meteorology and Environment Project

With contribution from R. Pavlovic , M. Moran, C. Stroud, D. Henderson, S. Belair, S. Leroyer, I. Stajner, G. Carmichael and GURME SAG

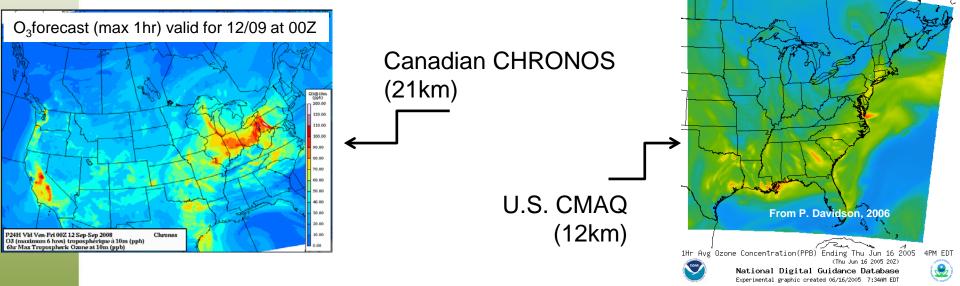
Overview

- Historical perspective ~ 2000 2014
 - Early years, Ramp-up and Growth to today's system
- The Canadian Air Quality Forecasting System
 - Operational system & model
- Air Quality Forecasting in general
 - Important ingredients
- Research outlook towards the next generation of models and services
 - A Canadian perspective

Page 2 – July 22, 2016

Early years: 1995 – 2000 (North America)

- Revisiting of association between urban air pollution and mortality
 - Harvard six cities study: An association between Air Pollution and Mortality in Six U.S. Cities, Dockery, Pope et al., 1993, The New England Journal of Medicine.
 - Canadian study: The Effect of the Urban Ambient Air Pollution Mix on Daily Mortality Rates in 11 Canadian Cities, Burnett, Cakmak and Brook,1998, Canadian Journal of Public Health.
- Looking at feasibility of AQ forecasting as mitigation
- Merging of air quality modelling and NWP capacity
 - High-Performance Computing in Meteorological Centres (NMHS)



Page 3 – July 22, 2016

First generation forecast models (NA)

Chemical transport models driven off-line by regional weather prediction models

- 48hr forecasts, twice a day (00 and 12 UTC)
- Gaseous species (O_3) in all, some with bulk PM_{25}
- Coarser horizontal and vertical resolutions than NWP, but regional-scale

nvironment Environnement Canada Canada

Page 4 – July 22, 2016

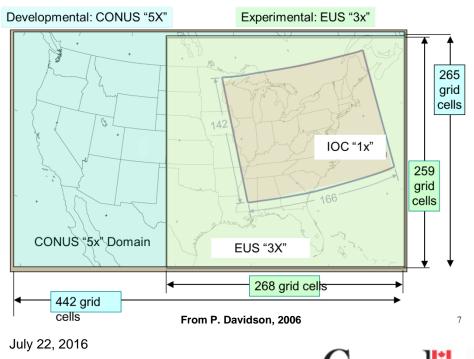
Rapid ramp-up focused on coverage, resolution and species (NA)

Environment Canada

•Summer 1999: First pilot for eastern Canada – CHRONOS (O_3 only, 21km res)

• **Summer 2001:** Prediction Program extended to all subarctic Canada (O₃)

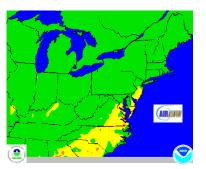
• Summer 2002: Introduction of bulk aerosol scheme in experimental version


• Summer 2003: bulk aerosol scheme in operational CHRONOS version (public)

• Summer 2004 to 2007: Year-long forecasts of O₃ and PM (op)

One of the main constraints at the time: what could be afforded on the computing infrastructure in the forecast window (~1h)

NOAA operational AQ forecasts from 2004 to 2007:


- From North-Eastern domain to CONUS (O₃)
- From 24h to 48h forecasts
- From O₃ to O₃ & smoke

Some key initiatives in AQF development

Site / Month	2014-11	2014-12	2015-01	2015-02	2015-03	2015-04
Barrie	99%	99%	99%	99%	93%	98%
Brampton	99%	98%	98%	99%	95%	98%
Burlington	98%	99%	99%	98%	95%	98
Dorset	99%	97%	98%	99%	95%	
Hamilton	99%	99%	99%	99%	95%	98
Hamilton Downtown	0%	65%	99%	99%	94%	• ((
Hamilton Mountain	0%	64%	99%	97%	94%	98 ('
Hanlan's Point	0%	65%	98%	99%	95%	98
Kingston	99%	99%	98%	99%	95%	98 M
London	99%	99%	99%	99%	94%	98
Mississauga	99%	98%	98%	98%	92%	98%
Newmarket	98%	98%	96%	99%	94%	98%
Oakville	99%	93%	96%	95%	89%	98%
Oshawa	97%	99%	95%	99%	95%	98%
Ottawa & Gatineau	99%	100%	99%	99%	99%	100%
Peterborough	99%	99%	95%	99%	95%	98%
Sault Ste. Marie	99%	99%	99%	97%	95%	98%
St. Catharines	99%	99%	99%	98%	95%	70%
Toronto	99%	99%	99%	99%	95%	98%
Toronto Downtown	0%	65%	99%	99%	95%	98%
Toronto East	0%	65%	99%	98%	95%	98%
Toronto North	0%	65%	99%	98%	94%	98%
Toronto West	0%	65%	99%	99%	92%	98%
Windsor	99%	99%	99%	99%	95%	98%
York University	0%	65%	99%	97%	95%	98%
The target for minimum a Good availability >= 95%	vailability of the	Po			availability	ufficient

6-month running statistics (Canada EC's observation monitoring system)

Real-time AQ data transmission

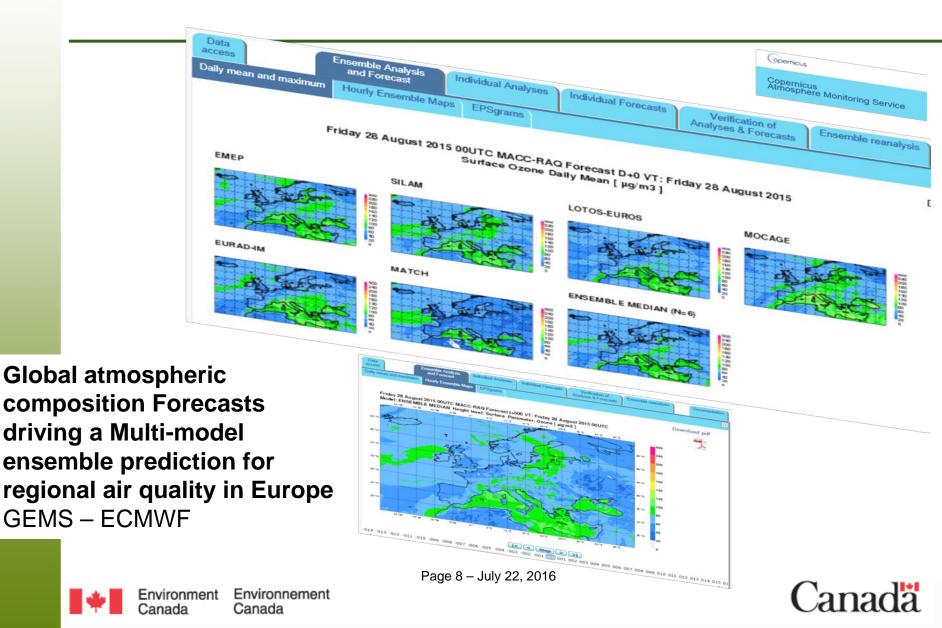
- AirNOW

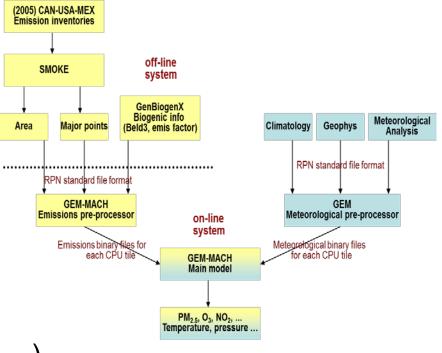
Canadian networks

	PM _{2.5} , log-transformed, statistics				O3 standard statistics			
Institute, model, horiz. resolution	r coeff.	Mod/Obs ratio	RMSE (factor)	Skill (%)	r	bias (ppbv)	RMSE (ppbv)	Skill (%)
NOAA FSL, WRF/CHEM-1, 27km	0.42	1.17	2.19	33	0.67	14.3	20.9	24
NOAA FSL, WRF/CHEM-2, 27km	0.64	0.81	1.97	64	0.73	3.4	11.6	61
NOAA FSL, WRF/CHEM-2, 12km	0.54	0.64	2.38	40	0.67	11.9	16.6	31
MSC Canada, CHRONOS, 21km	0.65	0.77	2.14	50	0.68	17.0	23.2	16
MSC Canada, AURAMS, 42km	0.46	0.85	2.16	59	0.54	5.9	16.2	27
U of Iowa, STEM, 12km	0.63	1.12	1.97	70	0.60	26.4	31.0	2
CMAQ/ETA, 12km	0.65	0.76	2.03	60	0.63	13.4	17.9	24
6-model arithmetic ensemble	0.73	0.89	1.78	76	0.76	10.2	15.0	47
6-model geometric ensemble	0.74	0.79	1.83	73				
Persistence (previous day forecast)	0.38	1.0	2.13	50	0.48	0.0	13.7	50

- Campaigns and Intercomparisons
 - ICARTT 2002/2004
 - TexAQ 2006

[McKeen et al., JGR, 112, 2007; McKeen et al., JGR, 110, 2005]

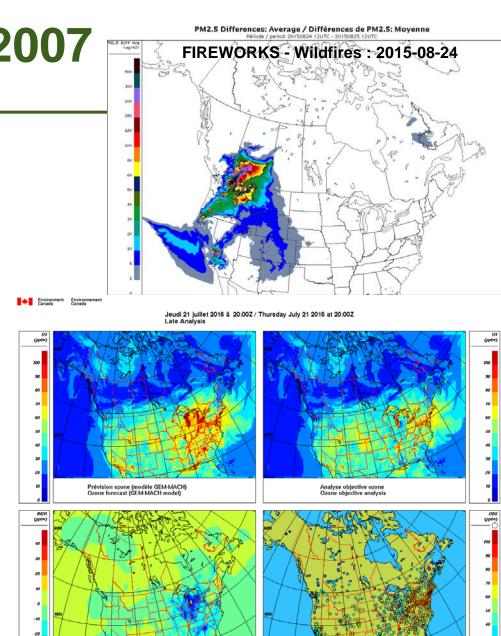

Beginning of multi-model ensembles in North America


European effort: GEMS/MACC/Copernicus

Turning point: in Canada, new MPI based HPC

• Summer 2004: major hardware change with MPI capability

- Started a 5 year development period towards on-line model
- Summer 2009:
 Operational implementation of second generation of AQ forecast model: on-line GEM-MACH (1-way interaction)
- Marks operational uptake of research on on-line AQ
 Models (WRF-Chem, GEM-AQ, ...)


Page 9 – July 22, 2016

Growth since ~2007

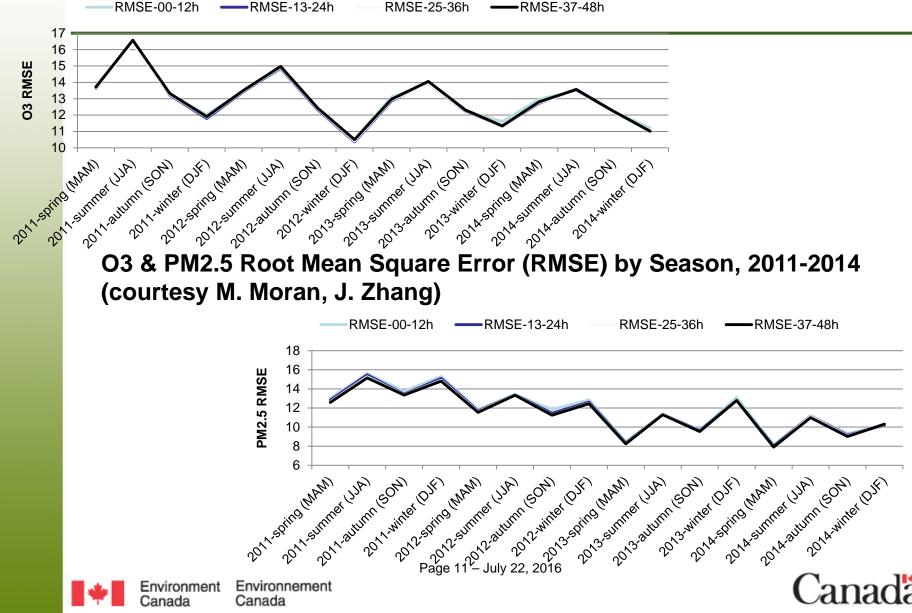
Environment Canada:

- Chemical /emission modules
 - 2 bins representation of PM
- Resolution: 21 to 15 to 10km
 - Driven by met model changes
- Smoke (Fireworks)
 - <u>http://weather.gc.ca/fir</u>
 <u>ework/index_e.html</u>
 - Operational objective analysis and post-processing

ozone basée sur les observations de surface

Ozone based on surface observatio

1298 stations



Page

Différence analyse objective-prévision

Objective analysis-forecast difference

Performance is steadily improving

Canada

Operational Air Quality Forecasting in Canada: Current Status

Radenko Pavlovic Meteorological Service of Canada Environment Canada

Authors:

R. Pavlovic¹, Sophie Cousineau¹, Michael D. Moran² Sylvie Gravel³, and Yulia Zaitseva⁴

¹Air Quality Modeling Applications Section, Environment Canada, Montreal, Quebec, Canada
 ²Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
 ³Air Quality Research Division, Environment Canada, Montreal, Quebec, Canada
 ⁴Data Assimilation and Quality Control Section, Environment Canada, Montreal, Quebec, Canada

Canada's Air Quality Health Index

- 15-year-old program that has evolved from an O₃-only forecast programe in eastern Canada to a Canada-wide O₃, NO₂, PM_{2.5} forecast program
- As of today, forecasts are communicated in most areas as an Air Quality Health Index (AQHI)

Air Qua	lity Health Index	La cote a	ir santé 10 +				
low risk faible risque	moderate risk risque modéré	high risk risque élevé	very high risk risque très élevé				
*At Risk Popu	*At Risk Population – *Population touchée						
Enjoy your usual outdoor activities.	Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms.	Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy.	Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion.				
Profitez de vos activités habituelles en plein air.	Envisagez de réduire ou de réorganiser les activités exténuantes en plein air si vous éprouvez des symptômes.	Réduisez ou réorganisez les activités exténuantes en plein air. Les enfants et les personnes âgées devraient également modérer leurs activités.	Évitez les activités exténuantes en plein air. Les enfants et les personnes âgées devraient également éviter de se fatiguer en plein air.				
* People with heart or breathing problems are at greater risk. Follow your doctor's usual advice about exercising and managing your condition. * Les personnes éprouvant des problèmes cardiaques ou respiratoires sont les plus menacées. Observez les conseils habituels de votre médecin sur l'exercice et la manière de prendre soin de vous.							
123	4 5 6	7 8 9 10	+				
General Population – Population en général							
Ideal air quality for outdoor activities.	No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation.	Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation.	Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation.				
Qualité de l'air idéale pour les activités en plein air.	Aucun besoin de modifier vos activités habituelles en plein air à moins d'éprouver des symptômes comme la toux et une irritation de la gorge.	Envisagez de réduire ou de réorganiser les activités exténuantes en plein air si vous éprouvez des symptômes comme la toux et une irritation de la gorge.	Réduisez ou réorganisez les activités exténuantes en plein air, particulièrement si vous éprouvez des symptômes comme la toux et une irritation de la gorge.				

Air Quality Health Inc	dex	http://weather.gc.ca				
Choose a Provincial Summar AB BC MB NB	y <u>NL NT NS s</u>	ON PE QC SK				
I his table shows a sum		ent forecast values of the Air Quality Health Index for many Canadian cities.				
City	Value					
Calgary	3 - Low Risk					
Charlottetown	2 - Low Risk					
Edmonton	3 - Low Risk					
Fredericton	2 - Low Risk					
Halifax	2 - Low Risk					
Inuvik	1 - Low Risk					
Labrador City	2 - Low Risk					
Montréal	4 - Moderate Risk					
Ottawa (Kanata - Orléans)	4 - Moderate Risk					
Prince George	2 - Low Risk					
Québec	3 - Low Risk					
Regina	2 - Low Risk					
Saint John	2 - Low Risk					
Saskatoon	2 - Low Risk					
St. John's	2 - Low Risk					
<u>Toronto</u>	6 - Moderate Risk					
Vancouver	3 - Low Risk					
Winnipeg	2 - Low Risk					
Yellowknife	2 - Low Risk					

 $\textbf{AQHI} = (10/10.4)*100*[(exp(0.000871*NO_2)-1) + (exp(0.000537*O_3)-1) + (exp(0.000487*PM_{2.5})-1)]$

Overview of the Canadian AQ Forecast Program – Public Forecasts

Air Quality

Find the latest local air quality forecasts and information.

http://weather.gc.ca

AQHI

Air Quality Health Index

- <u>Canada</u>
- <u>Alberta</u>
- British Columbia
- <u>Manitoba</u>
- <u>New Brunswick</u>
- Newfoundland and Labrador
- Northwest Territories
- <u>Nova Scotia</u>
- Ontario
- Prince Edward Island
- Quebec
- <u>Saskatchewan</u>
- Guide to Forecasts

Text Bulletins

- <u>Alberta</u>
- British Columbia
- <u>Manitoba</u>
- <u>New Brunswick</u>
- <u>Newfoundland and Labrador</u>
- Northwest Territories
- Nova Scotia
- Ontario
- Prince Edward Island
- Quebec
- <u>Saskatchewan</u>

Ventilation

- <u>Alberta</u>
- <u>Manitoba</u>
- Northwest Territories
- <u>Nunavut</u>
- Saskatchewan

Charts

Air Quality Forecast Model

Air Quality Index

Quebec INFO-SMOG

1 ago 17 July 22, 2010

Canadian Air Quality Forecast System

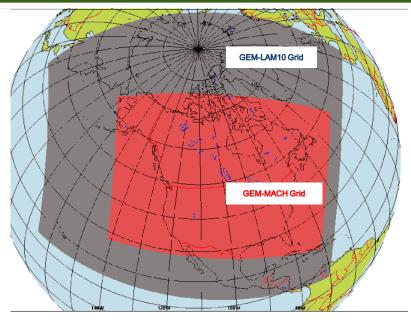
• RAQDPS (Regional Air Quality Deterministic Prediction System)

- GEM-MACH
- Emissions & boundary conditions
- Statistical model (UMOS-AQ)
- Products
- Regional Deterministic Air Quality Analysis (RDAQA)

• FireWork (RAQDPS with wildfire emissions)

- Emissions
- Statistical model (UMOS-AQ)
- Specialized Products
- Regional Deterministic Air Quality Analysis connected to FireWork (RDAQA-FW)
- **RDAQA** (Regional Deterministic Air Quality Analysis System)
- Experimental AQ system versions (ex: GEM-MACH on 2.5km for PanAm games)
- VAQUM (Verification of Air QUality Models) System

Page 15 – July 22, 2016



GEM-MACH, Operational Version (v1.5.4)

- GEM-MACH is ECCC's operational AQ model. Here are some essential characteristics:
 - limited-area (LAM) configuration with co-located grid points with operational met-only GEM, which supplies initial conditions and lateral boundary conditions for GEM-MACH
 - 10-km horizontal grid spacing, 80 vertical levels to 0.1 hPa
 - One-way coupling (meteorology affects chemistry)
 - 2-bin sectional representation of PM size distribution (i.e., 0-2.5 and 2.5-10 µm) with 8 chemical PM components

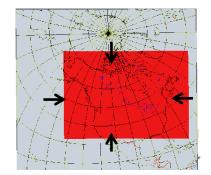
Canada

Canada

- Full process representation of oxidant and aerosol chemistry:
 - gas-, aqueous- & heterogeneous chemistry mechanisms
 - aerosol dynamics
 - dry and wet deposition (including in- and below-cloud scavenging)

Emissions & Boundary Conditions

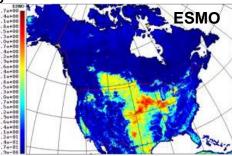
- National emissions inventories processed with SMOKE
 - Canada 2010, USA 2011, Mexico 1999
 - Processing area sources, point sources, mobile sources
 - Over 10 000 major points, processed individually in the model

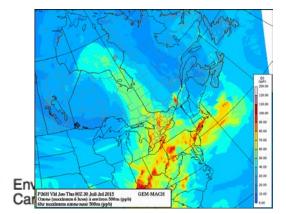

Biogenic emissions

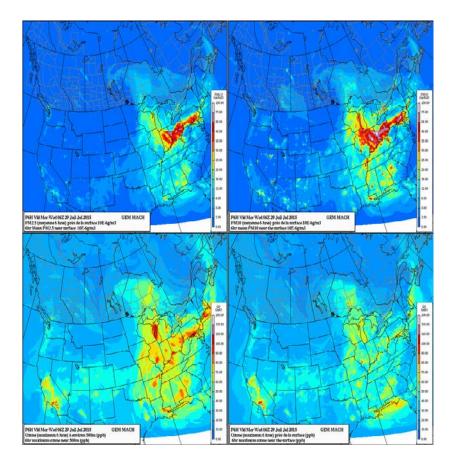
- Four emission factors: NO, isoprene, monoterpenes & other VOCs
- Using BEIS system with BELD3 vegetation database (231 categories), + Canadian National Forest Inventory
- Adjust emissions rates online according to meteorology
 - Solar radiation, cloud cover, 10m temperature

Initial and Boundary Conditions

- Using previous 12h forecast as initial AQ conditions
- Using the operational weather analysis as initial weather conditions
- Weather "piloting" from the operational weather runs (which are on a larger domain)
- AQ piloting: using a chemical climatology at the boundaries
 - Varies according to month of the year


Páge 17 – July 22, 2016

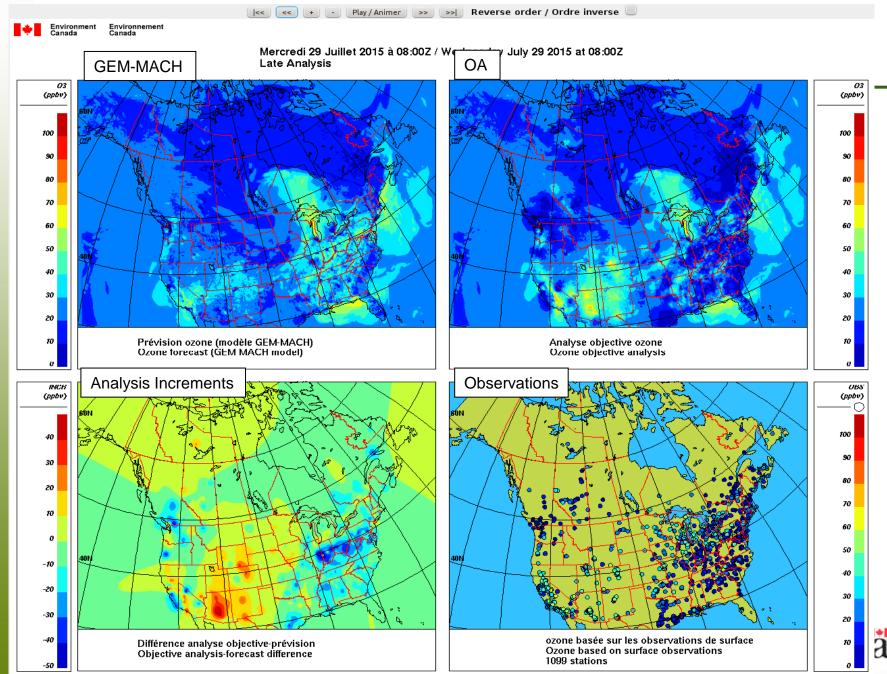




Overview of the Canadian AQ Forecast Program – Model Charts

- Maximum ozone near the surface, at 50m and 500m over a 6-hour interval
- PM_{2.5}/PM₁₀ near the surface 6-hour mean
- 4-panel maps (PM_{2.5}, PM₁₀, O₃ near the surface, O₃ at 500 metres)
- Products are available over:
 - Eastern Canada; Western Canada and North America

Page 18 – July 22, 2016


OA: Objective Analysis for Surface Pollutants

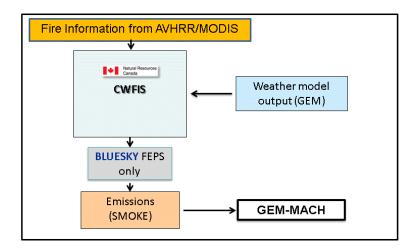
- Operational as of February 2013, called RDAQA
- Blends model forecasts with surface observations from Canadian regional networks and the U.S. EPA's AIRNow observation network
 - Using an optimal interpolation approach
 - Knowledge of the errors of model and observation data is applied to weight each input accordingly
- Products available hourly (2x = early and late analyses):
 - Available for : PM_{2.5}, O₃, NO₂, NO, SO₂, PM₁₀ and AQHI
 - Analyses are not yet used to initialize GEM-MACH
 - Tests have been made, applying a correlation factor to spread information at the surface into the vertical dimension
 - Results show an improvement in the short-term forecast

Example of 4-Panel OA Summary for Wed. July 29, 2015, 08 UTC

operational AQ model. The only difference is the inclusion of the near-real-time wildfire emissions

FireWork System

FireWork:

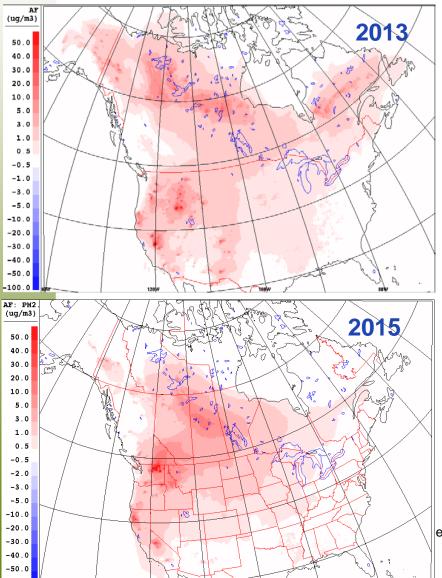

- Run twice daily (initiated at 00 UTC and 12 UTC)
- Available at approximately at the same time as the operational model

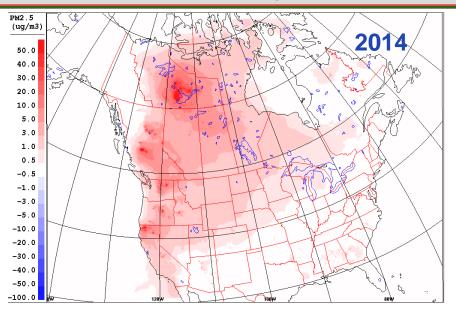
Additional products

- Alternate AQHI based on FireWork
- PM_{2.5}/PM₁₀ maps and animations based on difference fields (FireWork – GEM-MACH) to isolate plumes
- Total column PM_{25}/PM_{10} sums
- Other specialized products available upon request

Page 21 – July 22, 2016

WildFire Emissions Data





How Important are wildfires for AQ?

Forecasted wildfire emissions contribution to average summertime PM_{2.5} concentrations

In Canada, the impact of wildfire smoke on air quality is very significant.

Forecasted wildfire emissions contribution to the average summertime $PM_{2.5}$ concentrations (2013-2015) ranges from a few $\mu g/m^3$ to <u>over 30µg/m³</u>.

e 22 – July 22, 2016

Edmonton and Vancouver Examples

Bad air quality caused by forest fires


PM_{2.5} observed up to 250 µg/m³

August 19th 2010

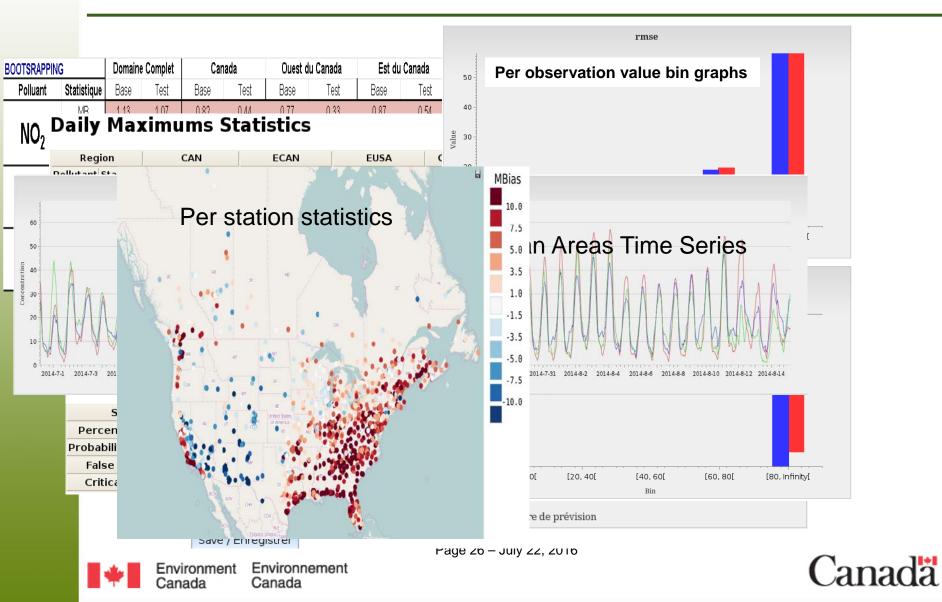
Vancouver without smoke

July 6th 2015

Curtousy of J. Veerman, RWDL

*

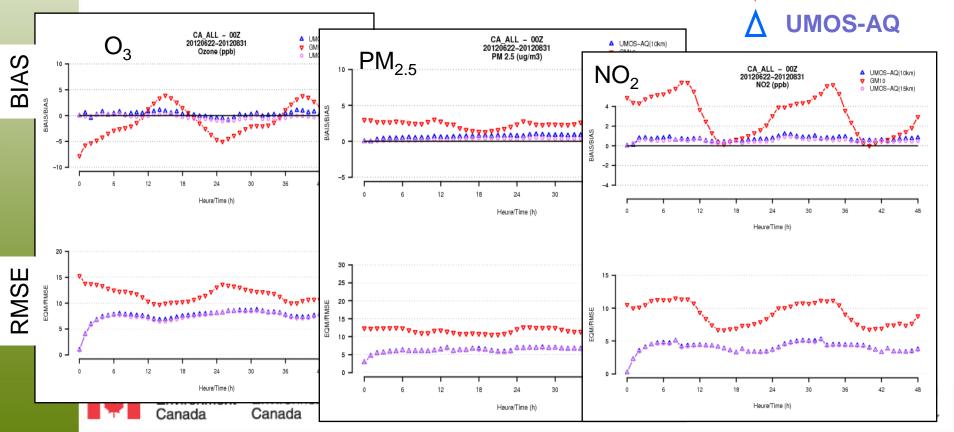
Environment Environnement Canada Canada Forecasters can observe that advected pollution is **<u>under-estimated</u>**


Canada

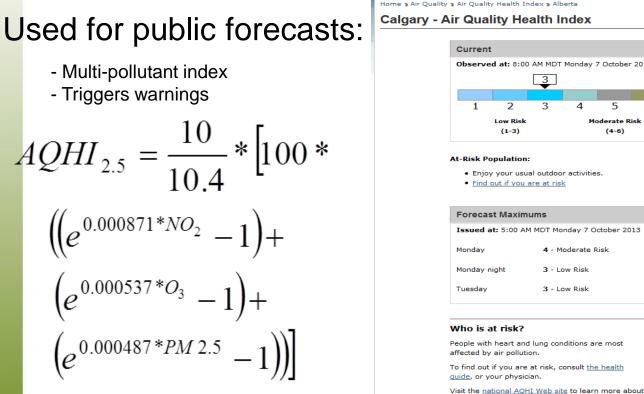
VAQUM: Verification for Air QUality Models

- Designed a PostGIS database to store AQ observations and corresponding model outputs
 - Can ingest both real time and QC'ed historical datasets
 - Allows to produce various statistics & categorical scores
 - About 1730 stations (265 CAN, 1465 USA)
 - Collecting data since 2007
- Essential tool to assess the impact of model updates
- Also used to monitor the performance of the operational system

VAQUM Products

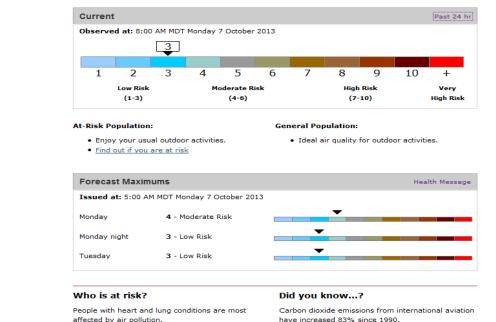


Statistical Model: UMOS-AQ


- Post-processing applied to GEM-MACH raw model output
- Reduces model bias and model error at point locations with AQ monitors through through multi-variate linear regression approach

GEM-MACH

- Applied to meteorological variables since 2000
- Adapted for air quality variables (O_3 , NO_2 , $PM_{2.5}$) in 2010
- Equations are recalculated four times a month



Products: Air Quality Health Index

Home > Air Quality > Air Quality Health Index > Alberta

Different messaging for at-risk population vs. general population

Environment Environnement Canada Canada

Page 28 - July 22, 2016

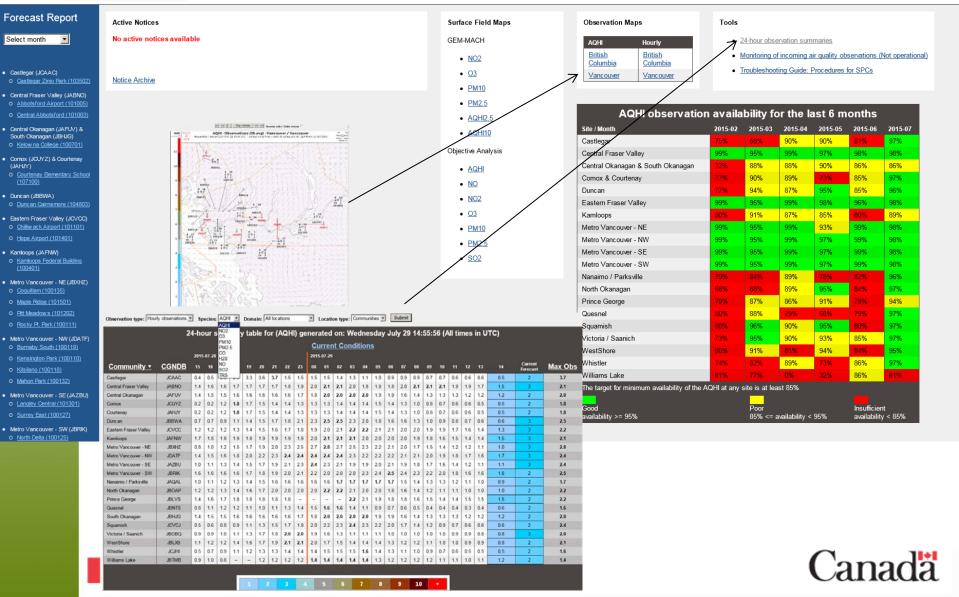
Products: Forecaster Tools

- Air quality forecast is prepared for each AQHI community
- Forecasters examine time series of
 - Recent observations
 - Hourly forecasts for the 3 AQHI pollutants (O₃, PM_{2.5}, NO₂), with a 3h running average
 - From UMOS-AQ
 - Resulting AQHI

• Additional products are made available to forecasters

- Internal website with all monitoring sites observations & forecasts
- Allow investigation of special situations (smoke episode, trans-boundary pollution advection, wildfire smoke dispersion, etc).

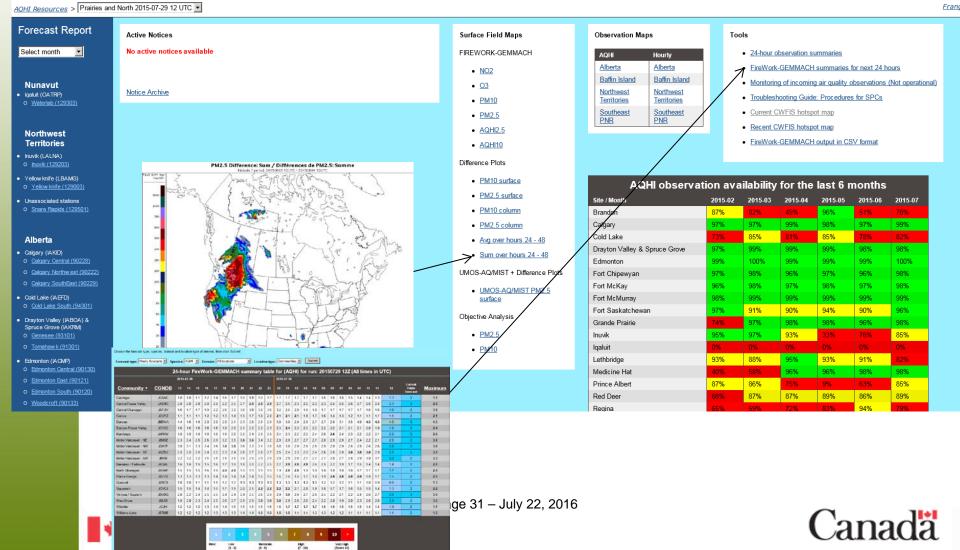
Page 29 – July 22, 2016



Products: AQHI Forecaster Resource Site

Section des Applications en Modélisation de la Qualité de l'Air (SAMQA) Air Quality Modeling Applications Section (AQMAS)

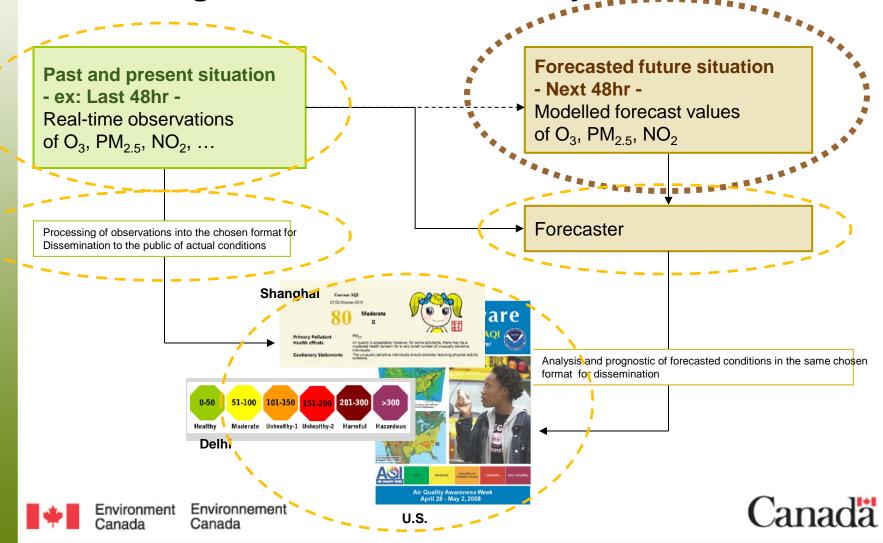
AQHI Resources > Pacific and Yukon 2015-07-29 00 UTC 💌


In case of problems, refer to this document | Françai

Products: FireWork Forecaster Resource Site

Section des Applications en Modélisation de la Qualité de l'Air (SAMQA) Air Quality Modeling Applications Section (AQMAS)

FIREWORK-GEMMACH SITE



Operational Air Quality Forecasting in general

Generic AQ forecasting system

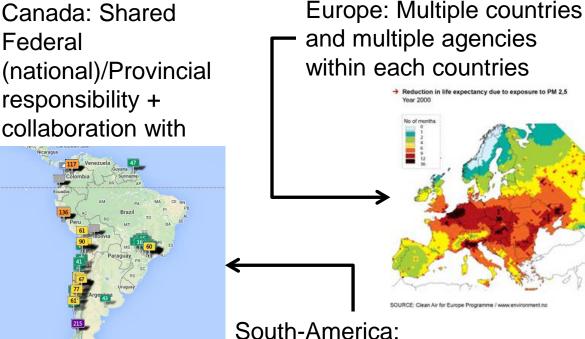
Schematic diagram of an AQ forecast system

Generic AQ forecasting system

Each part of the system has specific requirements:

- Requirements for numerical model(s): the forecast needs to be available with a certain leadtime
 - Domain size & model complexity to be balanced with computing time/power and timing of the forecast
 - Compromise with availability of met forecast/fields
- Requirements for the observations: Available in as nearreal-time as possible
 - Density : As many as possible
 - Multiple sources: At forecast locations (urban/sub-urban), but also upstream and at regional and/or global scale (satellite)
 - Timing: For some systems, observations are used as input

Page 34 – July 22, 2016



Jurisdictional challenges

In the AQ world, observation sites can be owned and/or operated by multiple agencies \neq met

US: Multiple Federal Agencies + State and local authorities

Multiple agencies & academia

Page 35 - July 22, 2016

From agci.org

eduction in life expectancy due to exposure to PM 2.5

Jurisdictional challenges

- The different agencies usually have different mandates and responsibilities:
 - Regulatory mandate
 - Research, Long term background monitoring
- Real-time transmission is not always exploited if not required for mandate
 - Added complexities for extremely remote locations
 - Need to work collaboratively to upgrade networks to the benefit of all parties
 - Ex: In Canada, the Meteorological Centre supplied DRDAS® hardware and licenses for joint federal/provincial sites
- Data need to be collected centrally for forecast to access

 Own system or one that is readily accessible

Page 36 – July 22, 2016

Jurisdictional challenges

- Different agencies also means:
 - Differences in instrumentation
 - Differences in mode of operation for PM in particular) and calibration
 - Differences in reporting schedules

- Similar considerations as for any AQ networks:
 - Homogeneity of network(s) in terms of data, format and transmission

But now in Real-time

- Consider establishing a RT monitoring system of the monitoring data (data volume, outages, corrupted data)
- Real-time QA/QC

Page 37 – July 22, 2016

Jurisdictional challenges

Environment Canada Monitoring system for observations

Monitoring de la Qualité de l'air en date du 20150406 1900Z

Nombre total d'observations reçues par région pendant la dernière heure

	LÉGENDE:					
Contra St	>30% de la moyenne de dix jours	<30% de la moyenne de dix jours				

Bonnes Données / Mauvaises Données / Données Suspe

20150406 1800Z

Retour à la p	page pri	ncipal	e .

RÉGION	03	NO2	PM2.5	PM10	SO2	H2S	TRS	со	NO	1
ATLANTIQUE	25/0/1	18/0/0	18/0/0	NULL	8/0/0	NULL	NULL	NULL	7/0/0	
QUÉBEC	10/0/0	10/0/0	10/0/0	NULL	1/0/0	NULL	NULL	3 / 0 / 0	1/0/0	
ONTARIO	40 / 0 / 0	40/0/0	40 / 0 / 0	NULL	11/0/0	NULL	NULL	NULL	40/0/0	
MANITOBA	2/0/0	2/0/0	4/0/0	3/0/0	3/0/0	NULL	NULL	2 / 0 / 0	NULL	1.4.14
SASKATCHEWAN	4/0/0	4/0/0	3/0/0	NULL	3/0/0	NULL	NULL	2 / 0 / 0	NULL	
ALBERTA	22/0/0	27/0/0	22 / 0 / 0	1/0/0	25/0/0	2/0/0	6/0/0	8/0/0	26/1/0	
BC MINISTRY OF THE ENVIRONMENT	16/0/0	16/0/0	36/0/0	18/0/0	24/0/0	NULL	12/0/0	2 / 0 / 0	17/0/0	1
METRO VANCOUVER	16/0/0	16/0/0	15/0/0	8/0/0	11/0/0	NULL	1/0/0	14/0/0	16/0/0	1000
CAPMoN	6/0/0	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	
TERRITOIRES DU NORD-OUEST	2/0/0	2/0/0	2/0/0	2/0/0	2/0/0	NULL	NULL	2/0/0	2/0/0	

Hourly summary across Canada

6-month running statistics for 1 region

AQHI observation availability for the last 6 months							
Site / Month	2014-11	2014-12	2015-01	2015-02	2015-03	2015-04	
Barrie	99%	99%	99%	99%	93%	98%	
Brampton	99%	98%	98%	99%	95%	98%	
Burlington	98%	99%	99%	98%	95%	98%	
Dorset	99%	97%	98%	99%	95%	98%	
Hamilton	99%	99%	99%	99%	95%	98%	
Hamilton Downtown	0%	65%	99%	99%	94%	98%	
Hamilton Mountain	0%	64%	99%	97%	94%	98%	
Hanlan's Point	0%	65%	98%	99%	95%	98%	
Kingston	99%	99%	98%	99%	95%	98%	
London	99%	99%	99%	99%	94%	98%	
Mississauga	99%	98%	98%	98%	92%	98%	
Newmarket	98%	98%	96%	99%	94%	98%	
Oakville	99%	93%	96%	95%	89%	98%	
Oshawa	97%	99%	95%	99%	95%	98%	
Ottawa & Gatineau	99%	100%	99%	99%	99%	100%	
Peterborough	99%	99%	95%	99%	95%	98%	
Sault Ste. Marie	99%	99%	99%	97%	95%	98%	
St. Catharines	99%	99%	99%	98%	95%	70%	
Toronto	99%	99%	99%	99%	95%	98%	
Toronto Downtown	0%	65%	99%	99%	95%	98%	
Toronto East	0%	65%	99%	98%	95%	98%	
Toronto North	0%	65%	99%	98%	94%	98%	
Toronto West	0%	65%	99%	99%	92%	98%	
Windsor	99%	99%	99%	99%	95%	98%	
York University	0%	65%	99%	97%	95%	98%	
The target for minimum ava	ailability of the			85%			
Good availability >= 95%		85% <= av	or vailability < 95	5%	availability	ufficient / < 85%	

Page 38 – July 22, 2016

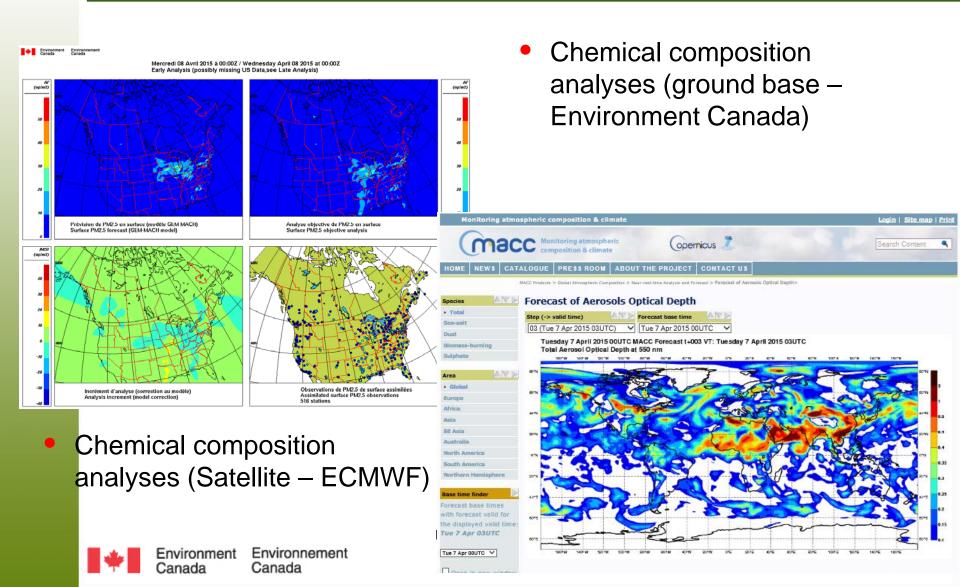
20150406 2000Z

Best Effort versus Operational Systems

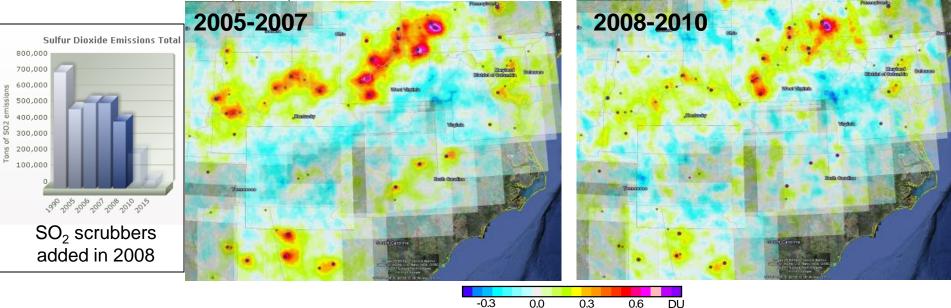
- System you have access to versus a system you operate?
 - How reliable is your access? How much redundancy is there?
 - How much outage can you handle at any one time?
- Within collaborative agreements, need to build real-time requirements for data exchange:
 - Ex: Environment Canada contributed to upgrade to have 24/7 data servers while Provinces agreed to increase support for outages (technician availability)
 - Data standarts: WMO/BUFR vs Airnow-like

Page 39 – July 22, 2016

Data constraints and considerations


- Given there are often multiple agencies and mandates, there maybe some constraints on what can be accessed or done with the data
 - Intellectual Properties differences, Political sensitivities, Disagreements on the use of data, Avoid confusion, Communication best practices....
- Is your system able to adapt and manipulate the data as necessary?
- Do you have resiliency through alternative sources of data?

Page 40 – July 22, 2016


Alternatives elements of the forecast system

Alternatives elements of the forecast system: Satellite Monitoring: SO2 Emissions from Individual Sources (Fioletov et al., 2011, GRL)

- OMI SO₂ data can be used to produce direct estimates of emissions from large individual sources (> 70kT/y)
- Methodology relies on averaging large number of individual pixels centered within a few km of the source
 - 1. QC screen by track position, cloud fraction, SZA
 - 2. Use of spatial smoothing
 - 3. Local bias correction high-pass filter to remove effects of remaining ozone signal

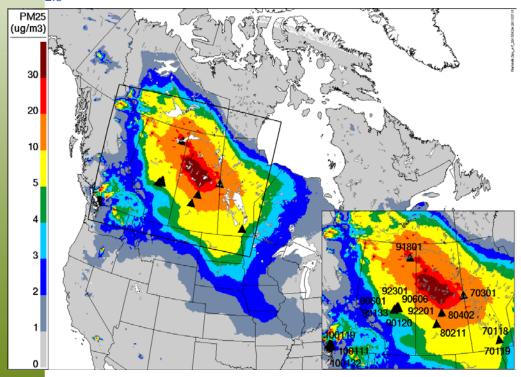
Mean OMI SO₂ values: Estimate change between two periods is 40% from OMI data; 46% from CEM data (US NEI)

Continuous Improvement

An operational system that is not sustained by continuous research and technological updates becomes irrelevant within a couple of years.

- GEM and GEM-MACH are supported by research teams within ECCC
- Innovation cycles are between 18 and 36 months.

Continuous Improvement


Air quality levels are changing as a result of various programs. Snapshot of the world's AQI levels on 2016-07-22 during a heat wave in eastern NA – From <u>https://waqi.info/</u>

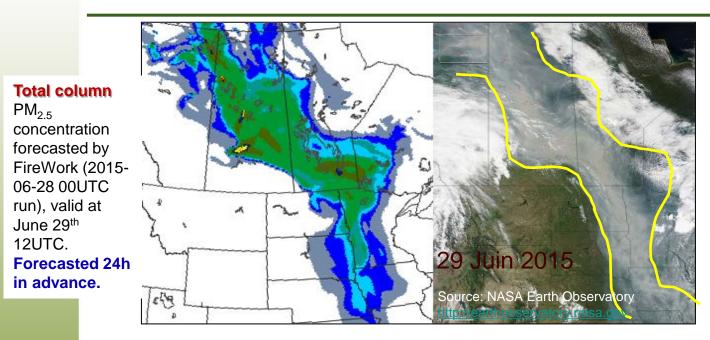
Period With Extreme Wildfires in Canada

Period: 24 June – 15 July 2015

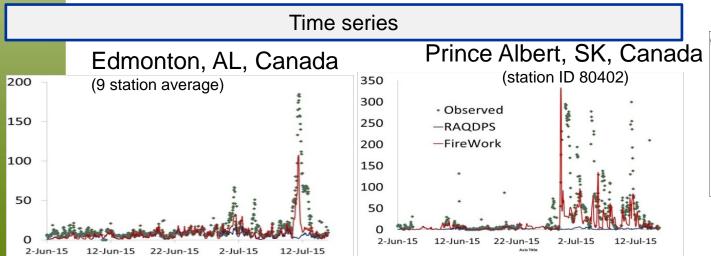
Average wildfire emissions contribution to **total surface** PM_{2.5} concentrations

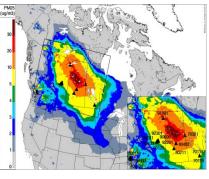
Objective Scores

Statistic	Western	Canada	Eastern	Canada	
Statistic	RAQDPS	FireWork	RAQDPS	FireWork	
MB	-11.72	-7.28	-2.34	-1.52	
R	0.03	0.50	0.30	0.41	
URMSE	30.00	25.81	9.79	9.26	
		FireWorkb			
		RAQDPS be			

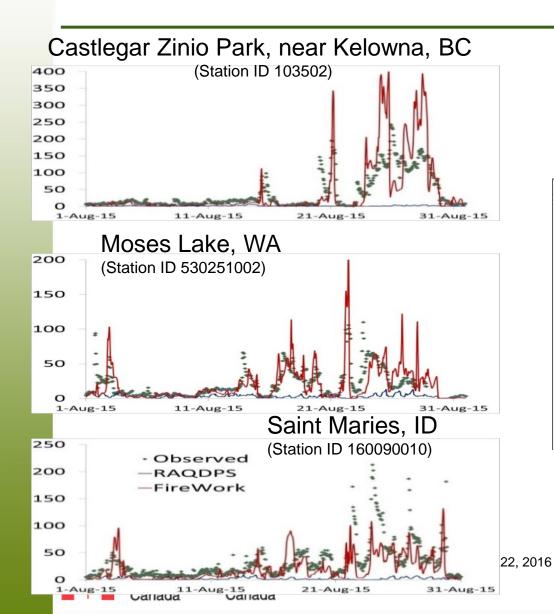

Categorical Scores

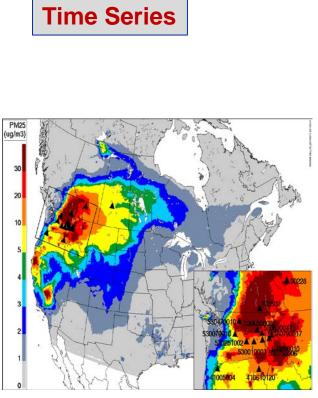
Categorical Score	Western	Canada	Eastern Canada		
	RAQDPS	FireWork	RAQDPS	FireWork	
POD	0%	26%	4%	11%	
FAR	96%	34%	97%	95%	
CSI	0%	23%	2%	4%	




Environment Environnement Canada Canada Page 45 – July 22, 2016

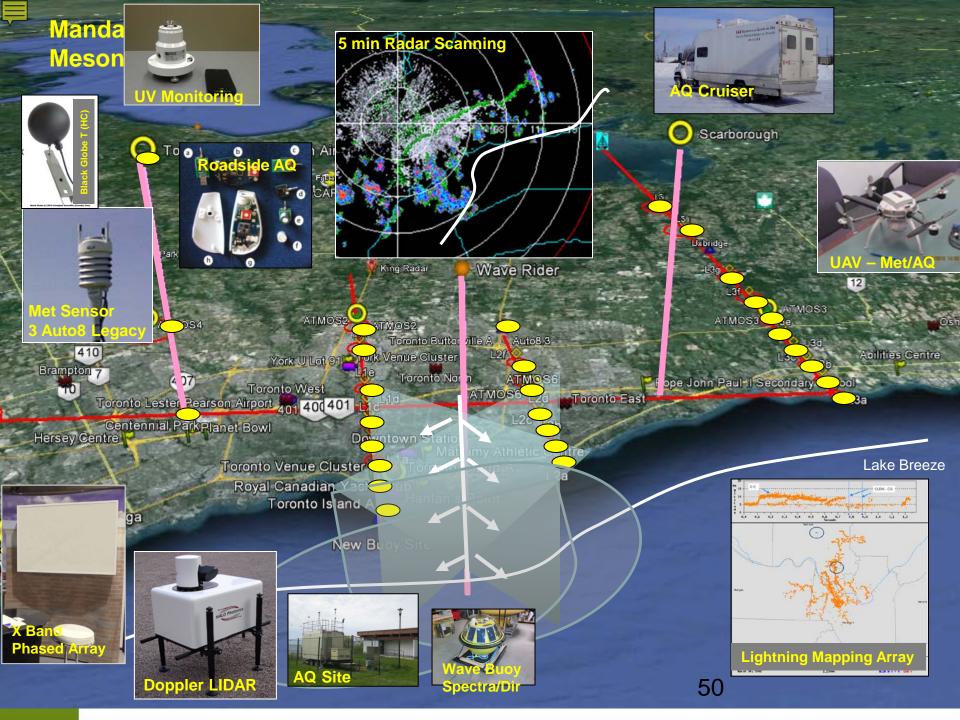
Period With Extreme Wildfires in Canada



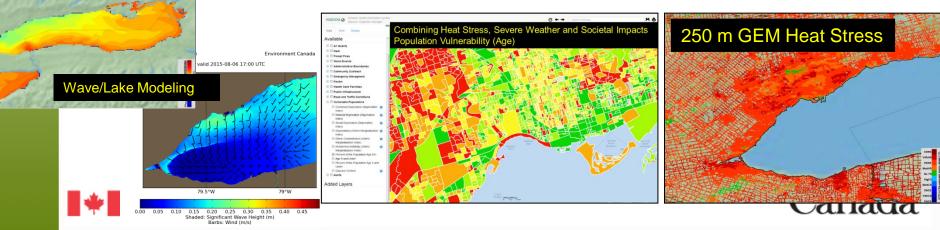

On June 29th, a dense "smoke river" from NW Canada to the central USA was observed. FireWork performed well in forecasting the affected regions.

Period With Extreme Wildfires in the USA

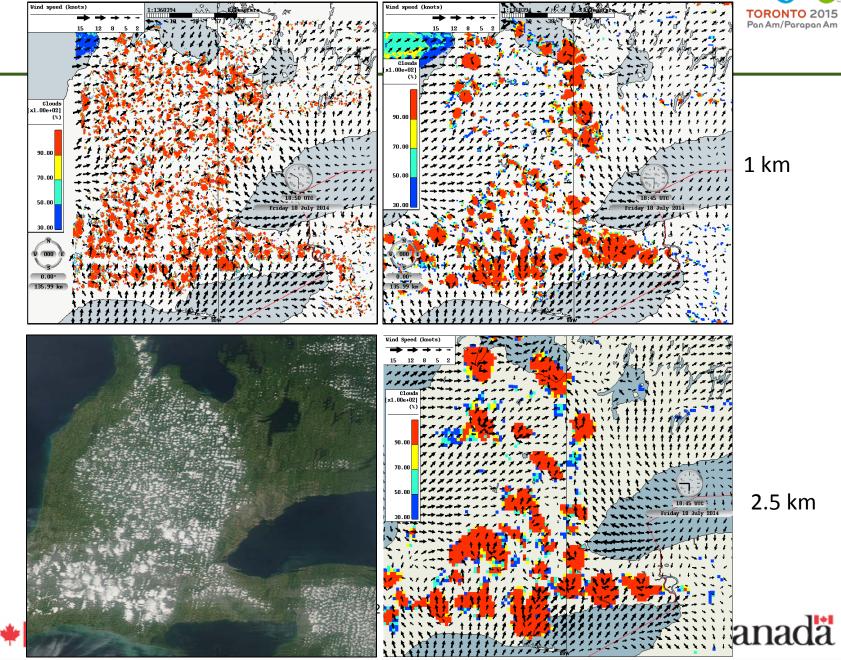
Current System Limitations


- Hotspot analysis algorithms (active burning emissions vs. smoldering emissions; remote sensing is limited by cloud cover)
- No modelling of fire spread and growth nor fire suppression
- Fire size is empirically estimated
- Timeliness of remote sensing data
- Uncertainties in forecasted meteorology are affecting FireWork (Example: an error of 0-30° in wind direction can greatly impact smoke advection)

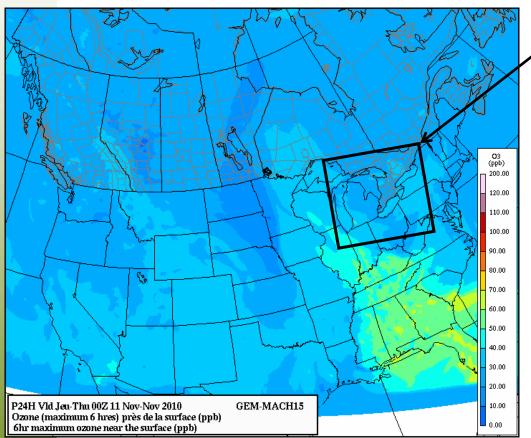
Environment Canada's Environment Prediction System for the Toronto 2015 Pan Am & Parapan Am Games



Forecast/Nowcast System


- Weather: 10km, 2.5km, 1km, 250m GEM cascade (urbanized <1km)
- AirQuality: 2.5 km GEM MACH AQ (HPC)
- Lake Model: GEM-NEMO (2km)
- Wave model :WW3 (1km deterministic)
- Heat: GEM heat stress indices
- Health Services & Societal User Impacts
- Dispersion modelling for emergency preparedness & response

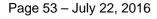
Cloud cover structure (18:50 UTC)



250 m

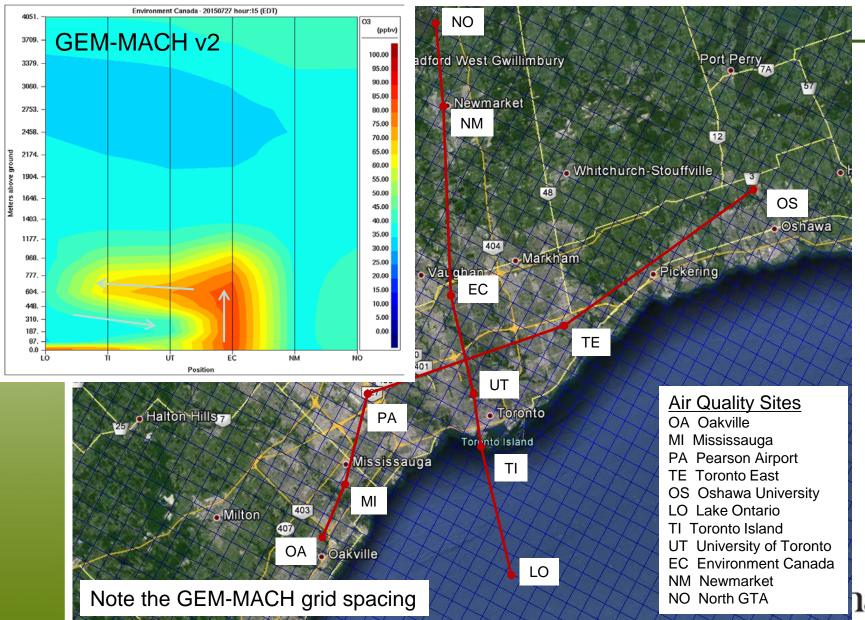
MODIS Aqua 250 m

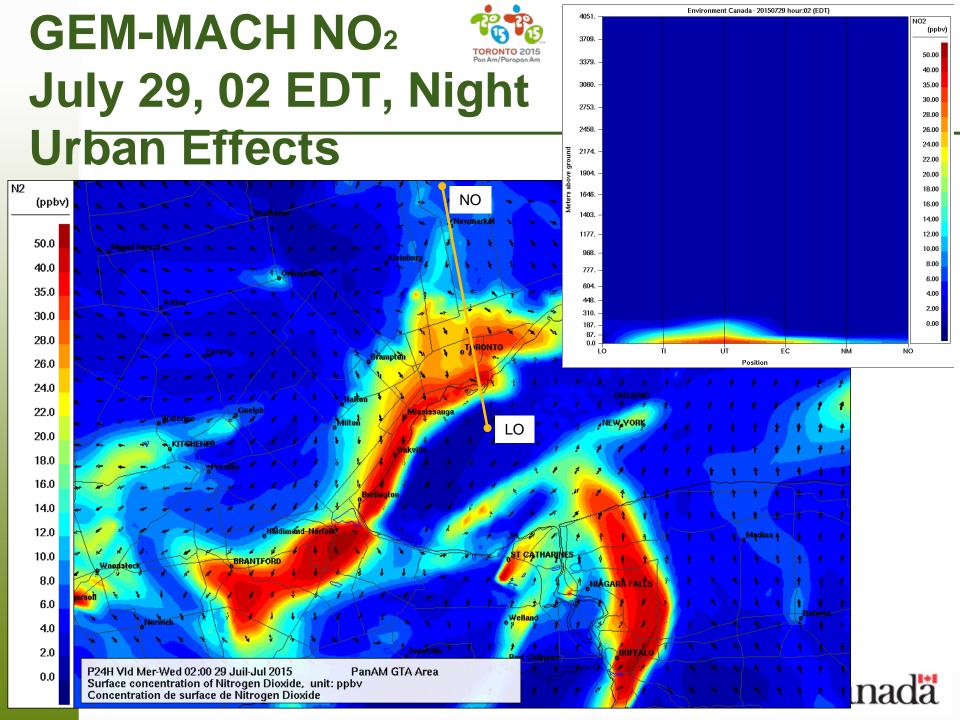
GEM-MACH v2 Model Setup for Pan Am Games (Craig Stroud, Sylvie Gravel) **FORONTO 2015**

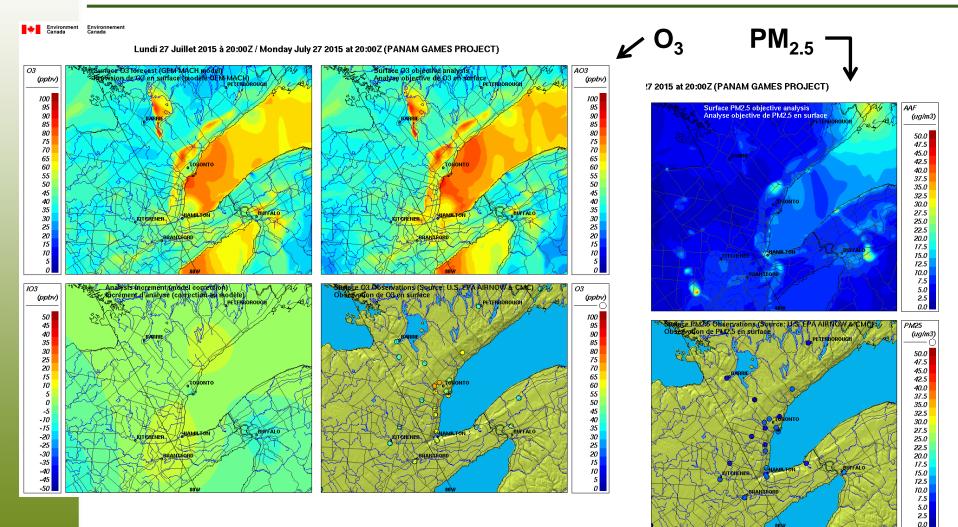

GEM-MACH 10km : 48-hr forecasts started at 0Z and 12Z GEM-MACH 2.5km : 24-hr forecasts started at 6Z

Canada

Environnement


- High resolution domain, 518x418 points (2.5 km)
- Chemical species at lateral boundaries are driven by ops **GEM-MACH** at 10km
- Chemical species at start of each forecast are recycled from last step of previous forecast
- Met species at start of each run • are from met analysis. Cloud variables are recycled from last time step.
- One of the objectives: Study the impact of Urban Heat Island and Lake Breeze circulations on air quality pollutant distributions




nvironment

Ozone Vertical Cross Section, July 27, 15 EDT Classic Lake Breeze Circulation

Chemical Objective Analysis for Ozone and PM_{2.5} at 2.5km resolution (Alain Robichaud)

Environment Environnement Canada Canada Page 56 – July 22, 2016

PERFORMANCE AND RESOLUTION: 2.5km vs 10km

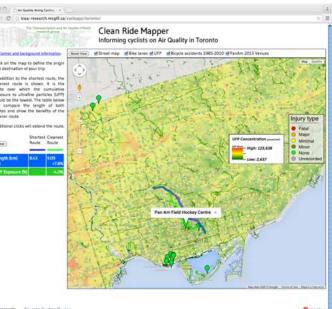
GEM-MACH Model Evaluation (Bootstrapping method)

	0	3	NC	02	PN	2.5
	HRDPS vs	RDPS vs	HRDPS vs	RDPS vs	HRDPS vs	RDPS vs
	OBS	OBS	OBS	OBS	OBS	OBS
R	0.39	0.25	0.81	0.87	0.56	0.42
MB	-3.25	3.99	1.68	2.62	-1.55	1.47
RMSE	5.05	6.50	3.52	4.35	3.20	4.10
	HRDPS	TOTAL		7		
	RDPS	TOTAL		2		

HRDPS: High Resolution AQ model – 2.5km RDPS: Regional AQ model – OPS 10km

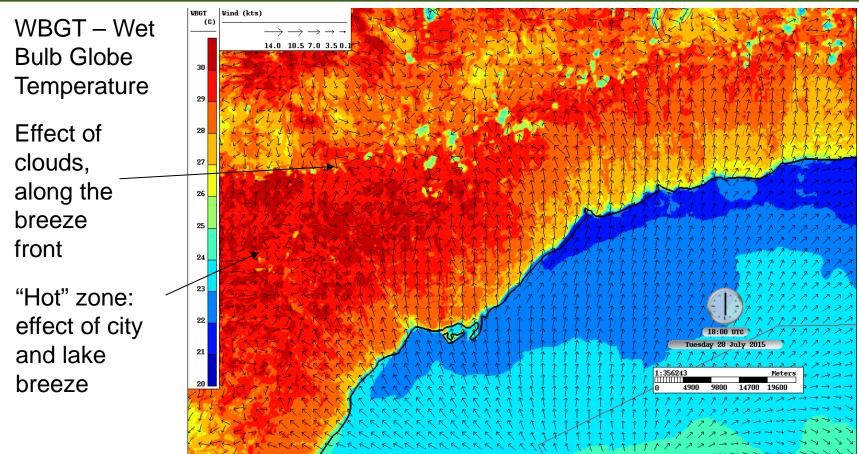
Next steps:

- Rerun at 1km with urbanized version
- Legacy dataset for entire Pan Am period (all AQ and met obs) WWRP HiWeather Project


Page 57 – July 22, 2016

Clean Ride Toronto

- The cycling app for Toronto was developed by McGill University and Health Canada
 - <u>http://traq-research.mcgill.ca/cycleapp/toronto/</u>
- New features
 - Improved navigation
 - More data (e.g. Pan Am Venues)
 - Ultrafine Particle Surface
- Toronto District School Board
 - Eco-schools
 - Summer School on Wx & Health

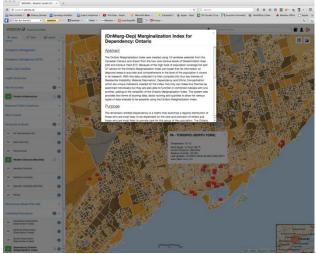


Canada

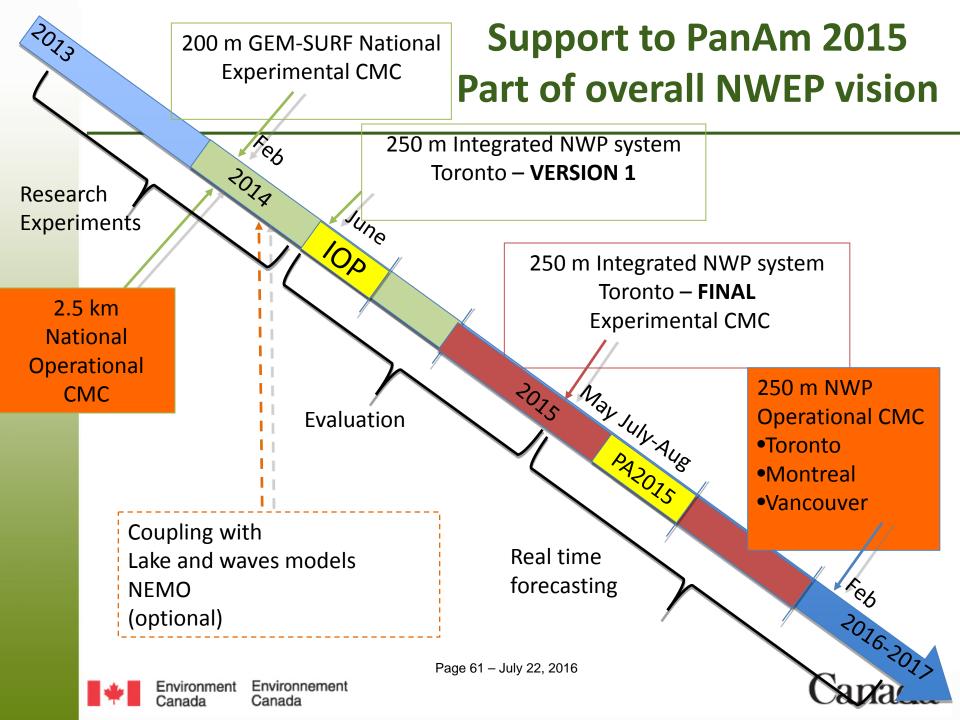
Page 58 – July 22, 2016

Heat event: An example of heat stress from 250-m GEM model (WBGT)

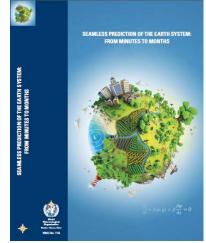
Valid 2:00 pm on July 28, 2015


Page 59 - July 22, 2016

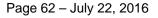
WISDOM


Weather and health Information System for Decision Optimization and Management

- Developed in collaboration with KFL&A Public Health
 - Based on PHIMS (Public Health Information Management System)
- Common Operating Picture Situational awareness tool for environmental risks related to public health
 - Custom ESRI GIS platform
 - Responsive design
 - Password protected
- Integration of monitoring/prediction with health outcomes in real-time
 - Socio-economic and psycho-social static data
 - To support interventions with vulnerable populations



Page 60 – July 22, 2016


Working closer with NWP scientists

- WWOSC2014 Seamless prediction of the Earth system: from minutes to months (Available online at: http://library.wmo.int/pmb_ged/wmo_1156_en.pdf)
- Chapter 12: Seamless meteorology-composition models: challenges, gaps needs and future directions (A. Baklanov et al, 2015)
 - Chapter 18: Urban-scale environmental prediction systems (C.S. Grimmond et al, 2015)
 - Resolution to describe urban effects for different applications
 - Methods to routinely gather and continuously update dynamically changing land cover
 - Advance coupled models that simulate the feedback between human activities and urban environmental conditions
 - Data assimilation methods to support coupled prediction systems

GAW Urban Research Meteorology and Environment Project (GURME)

Created under GAW in 1995:

- To enhance the capabilities of NMHSs in providing urbanenvironmental forecasting and air quality services of high quality, illustrating the linkages between meteorology and air quality;
- In collaboration with other WMO programmes, WHO and environmental agencies, to better define meteorological and air quality measurements focusing specifically on those that support urban forecasting;
- To provide NMHSs with easy access to information on measurement and modeling techniques;
- To promote a series of pilot projects to demonstrate how NMHSs can successfully expand their activities into urban environment issues.

mce2.org/wmogurme.org/ (hosted by L. Molina)

ironment Environnement ada Canada

The Urban Challenge

"urban" stations

The "standard" weather station

Environment Environnement Canada Canada Quality control^{Port} Urban²measurements must take Canada Environmement Canada to account the highly variable surface.

Emissions: Where to?

Atmospheric Environment

Volume 116, September 2015, Pages 320–322

Operational forecasting of source impacts for dynamic air quality management

Yongtao Hu^{a,} Armistead G. Russell^a, Michael E. Chang^b, Armistead G. Russell^a



Page 65 – July 22, 2016

Conclusion

- Air Quality Forecasting is an integral part of Numerical Prediction and the challenges ahead will need to be addressed in a coupled 'earth' system approach
- Technology transfer to Operation / R2O is critical
- Urban-scale systems and services emerging rapidely
- Looking forward to the next 15 years

IWAQFR workshop series

- 2009: Boulder, Co
- 2010: Quebec City, Canada
- 2011: Potomac, Maryland
- 2012: Geneva, Switzerland
- 2013: Santiago, Chile

- 2014: Montreal, Canada in conjunction with WWOSC
- 2015: College Park, Maryland
- January 2017: Toronto, Canada

Page 67 – July 22, 2016

ADDITIONAL SLIDES

Page 68 – July 22, 2016

GURME Terms of Reference

- Address the research barriers to advance the predictive capacity at increasing resolutions, and in the urban context in particular: through the coordination of reviews in the current state of science in urban-scale forecasting and associated monitoring, establish activities where gaps exist.
- Develop activities on those research questions/issues that transcend disciplines and require leveraging a broader community to develop improved forecasting concepts and tools to resolve complex urban environments at increasing scales; facilitate data sharing and establishment of test beds.
- Given the integrative nature of modelling, the on-going scientific trend towards seamless predictions and the evolution of technology, actively engage other WMO advisory and working groups within WWRP, GAW and the rest of its organisation, to address this complex and multidisciplinary challenge.
- While megacities will continue to receive particular attention, orient its research to cover the full array of urban environments that are key to the broader scientific question of urban-scale modelling.

GURME Terms of Reference – cont'

- Continue to nurture its engagement with the health community as the main partner in assessing the needs, evaluating the benefits and communicating resulting services to society within these urban environments.
- Build capacity through its research projects, identifying those environments that constitute gaps in the overall directions of the GURME program and Encourage in its projects the development and testing of derived services. The products themselves would take the form of forecasts, alerts and warnings and/or realtime/NRT maps or databases.
- Forge stronger collaborations with CBS and/or individual operational centres to transition products in dissemination systems in a form that is well suited for large or targeted audiences.
- Collaborate explicitly with the Apps-SAG on projects at the interface of regional and local scales and contribute actively to facilitating data assimilation efforts focused on integrated/coupled models and at finer and finer scales.