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The role of (aircraft) field campaigns
in air quality research

 They are absolutely essential and we should
have more of them.



The role of (aircraft) field campaigns
in air quality research

They are absolutely essential and we should have more
of them, because...

It’s difficult to compile emission inventories and even
more difficult to verify them with (typically sparse)
ground based monitoring (of few species).

It’s difficult to measure vertical distributions of many
tracers from the ground.

It’s impossible to assess chemical processing when only
ground-based data for some criteria pollutants is
available

One can’t adequately model ground level ozone and
develop pollution control strategies without
comprehensive observations



WP-3D Flight Track Map

NOAA’s SOS field campaigns (1990s)
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NOAA’s TexAQS field campaigns
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NCAR’s MIRAGE-Mex Field Campaign

Datagzet: domz ERIP: domz2
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The role of (aircraft) field campaigns
in air quality research

e Aircraft field measurements deliver:

— High resolution 3-D pictures of tracer distributions
and the state of the atmosphere
e Air mass evolution (‘Lagrangian’ approach)
e Vertical profiles to provide link with satellite and other
remote sensing data
— Payloads typically include measurements of highly
speciated primary and secondary pollutants,
including intermediates and products.

e FRAPPE payload



The role of (aircraft) field campaigns
in air quality research

e Aircraft field measurements deliver:

— The best tool for model evaluation
e Emissions (plus ground observations of point sources)
e Source “fingerprinting”
e Area and point source integration
e Ground truth for Meteorology / transport
e Chemistry and physical transformations

— Aircraft data can be used for ground monitor evaluation

e Provide validation for existing ground monitoring network

e Provide input for optimal monitor placement



The role of (aircraft) field campaigns
in air quality research

e Aircraft field measurements don’t deliver:

— Long term monitoring
* Typically weak statistics
« >Satellites, long term ground monitoring

— Smaller point source characterization

2 Simultaneous ground measurements

— Measurements very close to the ground (in
populated areas and complex terrain)

2> Missed approaches can help with this in select areas
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Front Range

e Very diverse Sources of air pollution

e Somewhat separated spatially in some cases, co-
located in other cases

* Different expectations of future growth
* Emissions difficult to assess
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Front Range

e Very diverse Sources of air pollution
e Somewhat separated spatially in some cases, co-
located in other cases
* Different expectations of future growth
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From Reddy et al,
2015

Nighttime drainage winds move cooler air into the low terrain (blue) where
it pools within an inversion. Looking west towards Front Range.
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From Reddy et al,
2015

Heating of the higher terrain pulls air and emissions from the lower terrain
up-valley during the late morning and afternoon. View to the west.
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Gabi Pfister, ACOM
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Altitude (km)

Gabi Pfister, ACOM
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Modeling AQ (in the Front Range)

e In order to adequately simulate Front Range ozone
and accurately predict outcomes of possible control
strategies, the model must:

Use accurate emissions

With accurate diurnal and seasonal variability
Distribute these emissions into an accurate
boundary layer

Predict wind direction and speed, horizontal
dispersion and mixing and vertical mixing/dilution
with accurate background air

Accurately compute the chemical reactions and
physical transformations



FRAPPE Measurements/Modeling

Aircraft: ozone, NO, NO,, HNO,, HNO,, PANS, alkyl nitrates,

peroxy nitrates, CO, SO,, CO,, methane, methane isotopes, NH;, C,-
C,, alkanes, alkenes, alkynes, CH,O, aldehydes, other oxygenates
(over 100 VOC species), CH3CN, HCN, OH, HO, and RO, radicals,
halogenated tracers, particles: number and size distr., type,
chemical composition, physical parameters, CN, met. and aircraft
state parameters, UV/Vis actinic flux measurements.

Aircraft with remote sensing instruments
Satellite data

Surface SitES/MObHEZ Photochemical tracers (depends on

site), mobile vans with photochemical and emission tracers, vertical
profiles (Erie Tower), column integrated measurements of aerosol
parameters, O;, NO,, vertically resolved measurements of ozone,
particles (LIDAR).

Modeling: cMAQ and RAQMS, WRF-tracer, WRF-Chem, CAM-
Chem, MOZART-4, FlexPart, NOAA HRRR, RAPChem



Key:
Instrument (Gas Type, Cylinder Size, # of Flights Before Changed)

TD-LiF and PTRMS will have small bottles mounted to
the tops of their racks.
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Modeling AQ (in the Front Range)

e In order to adequately simulate Front Range ozone
and accurately predict outcomes of possible control
strategies, the model must:

Use accurate emissions

With accurate diurnal and seasonal variability
Distribute these emissions into an accurate
boundary layer

Predict wind direction and speed, horizontal
dispersion and mixing and vertical mixing/dilution
with accurate background air

Accurately compute the chemical reactions and
physical transformations
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Calculated OH Reactivity by FRAPPE region
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Mobile Ground Sample (Weld County)
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Find good model / data comp
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Modeling AQ (in the Front Range)

e In order to adequately simulate Front Range ozone
and accurately predict outcomes of possible control
strategies, the model must:

Use accurate emissions

With accurate diurnal and seasonal variability
Distribute these emissions into an accurate
boundary layer

Predict wind direction and speed, horizontal
dispersion and mixing and vertical mixing/dilution
with accurate background air

Accurately compute the chemical reactions and
physical transformations
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transport nicely.
12 August 2014



Modeling AQ (in the Front Range)

e In order to adequately simulate Front Range ozone
and accurately predict outcomes of possible control
strategies, the model must:

Use accurate emissions

With accurate diurnal and seasonal variability
Distribute these emissions into an accurate
boundary layer

Predict wind direction and speed, horizontal
dispersion and mixing and vertical mixing/dilution
with accurate background air

Accurately compute the chemical reactions and
physical transformations
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Chemical mechanism comparison — Commerce City case
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BOXMOX Model — Ozone Production Potential
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BOXMOX Model — Ozone Production Potential (Low NO, runs)
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Thank you.
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