

Ultraviolet and visible trace gas measurements from satellites

Kelly Chance Smithsonian Astrophysical Observatory Harvard-Smithsonian Center for Astrophysics

July 28, 2016

ESA Global Ozone Monitoring Experiment

- Nadir-viewing UV/vis/NIR
 - 240-400 nm @ 0.2 nm
 - 400-790 nm @ 0.4 nm
- Launched April 1995, turned off July 2011
- Footprint 320 × 40 km²
- 10:30 am cross-equator time, descending node
- Global coverage in 3 days

Smithsonian Astrophysical Observatory

Sun-synchronous nadir heritage*

Instrument	Detectors	Spectral Coverage [nm]	Spectral Resolution [nm]	Ground Pixel Size [km ²]	Global Coverage
GOME (1995-2011)	Linear Arrays	240-790	0.2-0.4	40×320 (40×80 zoom)	3 days
SCIAMACHY (2002-2012)	Linear Arrays	240-2380	0.2-1.5	30×30/60/90 30×120/240 (depending on product)	6 days
OMI (2004)	2-D CCD	270-500	0.42-0.63	15×30 - 42×162 (depending on swath position)	daily
GOME-2a,b (2006, 2012)	Linear Arrays	240-790	0.24-0.53	40×40 (40×80 wide swath; 40×10 zoom)	near-daily
OMPS-1 (2011)	2-D CCDs	250-380	0.42-1.0	50×50 250×250 (depending on product)	daily

*Thanks to the late Dieter Perner of MPI Previous experience (since 1985 at SAO and MPI) Scientific and operational measurements of pollutants O₃, NO₂, SO₂, H₂CO, C₂H₂O₂ (& CO, CH₄, BrO, OCIO, CIO, IO, H₂O, O₂-O₂, Raman, aerosol,)

Low Earth orbit (LEO) measurement capability A full, minimally-redundant, set of polluting gases, plus aerosols and clouds is now measured to very high precision from satellites. Ultraviolet and visible spectroscopy of backscattered radiation provides O₃ (including profiles and tropospheric O₃), NO₂ (for NO_x), H₂CO and C₂H₂O₂ (for VOCs), SO₂, H₂O, O₂-O₂, N₂ and O₂ Raman scattering, and halogen oxides (BrO, CIO, IO, OCIO). Satellite spectrometers planned since 1985 began making these measurements in 1995.

Smithsonian Astrophysical Observatory

CfA

Air quality requirements from the GEO-**CAPE Science Traceability** Matrix

7/12/16

	11-28-2011 DR	RAF	FT GEO-CAPE aerosol-atmosphe	eres So	cience ⁻	Fracea	ability	Matrix BA	SELINE and THRESHOLD	
s	cience Questions	(Measurement Objectives color flag maps to Science Questions)	Measurement Requin (mapped to Measurement			quirem nent Ob	ents jectives)	Measurement Rationale	
What are the temporal and spatial variations		Baseline measurements ¹ :			onary Obse	erving Lo	ocation: 1	00 W +/-10	Provides optimal view of North America.	
		O3 diff km	i, NO2, CO, SO2, HCHO, CH4, NH3, CHOCHO, ferent temporal sampling frequencies, 4 km × 4 product horizontal spatial resolution at the center	Column measurements: [A to K] All the baseline and threshold species					Continue the current state of practice in vertical; add temporal resolution.	
of emissions of gases and			the domain; and AOD, AAOD, AI, aerosol optical ntroid height (AOCH), hourly for SZA<70 and 8 km I km product horizontal spatial resolution at the	Cloud Camera 1 km x 1km horizontal spatial resolution, two spectral bands, baseline only				Improve retrieval accuracy, provide diagnostics for gases and aerosol		
	aerosols important	center of the domain.		Vertical information: A to K						
 2. How do physical, chemical and 			reshold measurements':) hourly day and night; O3, NO2 hourly when A<70: AOD hourly (SZA<50) : at 8 km x 8 km	Two piece troposphe sensitivity	troposphere in daylight with sensitivity to the lowest 2 km			CO seline and eshold)	Separate the lower-most troposphere from the free troposphere for O3, CO.	
		pro the	oduct horizontal spatial resolution at the center of odmain.	Altitude (+/- 1km)			AO (ba	CH seline only)	Detect aerosol plume height; improve retrieval accuracy.	
	dynamical	A. Measure the threshold or baseline species or		Product horizontal spatial resolution at the center of the domain, (nominally 100W, 35 N): [A to H]						
	processes determine		properties with the temporal and spatial resolution specified (see next column) to quantify	4 km x 4 km (baseline),			Gases		Capture spatial/temporal variability; obtain better yields of products.	
	tropospheric composition and		the underlying emissions, understand emission processes, and track transport and chemical	8 km x 8 km (baseline, thres			old) Aerosol properties			
	air quality over	8		16 km x 16 km (baseline on			e only) Over open ocean		Inherently larger spatial scales, sufficient to link to LEO observations	
	scales ranging	2	aerosol and nitrogen deposition to land and	Spectral	region : 🖪	to H			Typical use	
	continental,			UV-Vis or UV-TIR 0		03	03		Provide multispectral retrieval information	
	diurnally to	5	surface PM concentration, UV-B level and	SWIR, MWIR CI UV SO SWIR CH		CO SO2, HCHO CH4			in daylight	
	seasonally?		visibility to aerosol column loading [1], 2, 3, 4, 5,						Retrieve gas species from their	
3. How does air		D.	Determine the instantaneous radiative forcings	TIR	TIR NH		NH3			
pollution drive climate forcing		associated with ozone and aerosols on the continental scale and relate them quantitatively to natural and anthropogenic emissions [3, 5, 6]		Vis AC		AOD, N	40D, NO2, CHOCHO		Obtain spectral-dependence of AOD for particle size and type information Obtain spectral-dependence of AAOD for	
	and how does	Observe pulses of CH4 emission from biogenic and anthropogenic releases; CO anthropogenic and wildfre emissions; AOD_AAOD_and AI from	Observe pulses of CH4 emission from biogenic	UV-deep blue AAC		AAOD	AOD		aerosol type information	
	affect air quality		UV-deep blue AI					Provide absorbing aerosol information		
	on a continental		fires; AOD, AAOD, and AI from dust storms; SO2		Atmospheric measureme		ements over Land/Coastal ar		ass baseline and threshold: IA to K	
	scale?	Quantify the inflows and outflows of O3. CO.		Aunospi	Time	Typ	ical	na/oousta/ u/	Land the should be should	
4.	How can		SO2, and aerosols across continental boundaries	O3 Hourly, SZA<70		n valu	value ²		Description	
observation space impro	observations from space improve air	G.	and on climate [2, 3, 5] Characterize aerosol particle size and type from				0-2 2kr 1	km: 10 ppbv n–tropopause: 5 ppbv	Observe Servith two pieces of information in the troposphere with sensitivity to the locust 2 km for surface	
and assessment for societal		-	spectral dependence measurements of AOD and AAOD [12, 3, 4, 5, 5]	со	Hou	2 x10	0-2 0 ¹⁸ 2kr	atosphere: 5% : km: 20ppbv n-tropopause:	Track anthropogenic ant biomass burning plumes; observe 0.0 with two	
	benefit?	representation of processes in air quality models and improve data assimilation in forecast and		r .		2	0 ppbv	preces of information in the certical with sensitivity to the lowest 2 km in daylight		
5 .	How does	_	assessment models Synthesize the GEO-CAPE measurements with information from in-situ and ground-based	AOD	A<70	0.1 -	1 0.0	5	and transport; climate forcing	
	transport affect air	1.		NO2	ourly, ZA<70	6 x10) ¹⁵ 1×1	10 ¹⁵	Distinguish background from enh nced/ polluted scenes; atmospheric che nistry	
	quality?		remote sensing networks to construct an enhanced observing system [1, 2, 3, 4, 5, 6]	Additic atmosp		eric measurements o		ts over Land	/Coastal areas, baseline only: 🖪 t 🕅	
6	How do enisodic	0	Leverage GEO-CAPE observations into an	Specie	Time resolut		Typical value ²	Precision ²	Description	
—	events, such as	[integrated observing system including geostationary satellites over Europe and Asia	нсно⁺	3/day, S		1.0x10 ¹⁶	1×10 ¹⁶	Observe biogenic VOC emissions	
wild fires, d outbreaks, a	wild fires, dust outbreaks, and		together with LEO satellites and suborbital platforms for assessing the hemispheric transport	SO2*	3/day, S		1×10 ¹⁶	1×10 ¹⁶	Identify major pollution and volca lic emissions; atmospheric chemisty	
	affect atmospheric	K	Integrate observations from GEO-CAPE and	CH4	day		4 x10 ¹⁹	20 ppbv	Observe anthropogenic and ne ural emissions sources	
	composition and		other platforms into models to improve representation of processes in the models and to	NH3	2/a			0-2 km: 2ppbv	Observe agricultural emissions	
	an quality?		link the observed composition, deposition, and radiative forcing to the emissions from					4×10 ¹⁴	Detect VOC emissions, terosol formation, atmosphere, chemistry	
			anthropogenic and natural sources [1], 2, 3, 4, 5, 5	AAC		ZAS	0 - 0.05		Distinguish smoke and dust from non- UV absorbing terosols; climate forcing	
					.ri y ,	SZA<70	-1 - +0	0.1	Detection osols near/above clouds and over snow/ice; aerosol events	
					Hourly,	SZA<70	Variable	1 km	Determine plume height; large scale transport, conversions from AOD to PM	
				,c	ean measu	rements	, F H, I, ,	l, K] baseline	only, 16 km x 16 km	
				1		1.	/day	Over open	oceans, capture long-range transport of	
				00		1.	/day	pollution, du	ust, and smoke into/out of North America; oundary conditions for North America	
				AOD, AA	, AAOD, AI		day		indary conditions for North America	
		0		1	I Inder	00 r	DOG	TO OTO		

AND	Atmosph	eas, baseline and th							
and the second s	Species		Time resolution		Typical value ²		cision ²	Description	
	03	Hourly, SZA<70		9 x10 ¹⁸		0-2 km: 10 ppbv 2km–tropopause: 15 ppbv Stratosphere: 5%		Observe O3 with two information in the tro sensitivity to the low AQ; also transport, o	
Infrared species	co	Hourly, day and night Hourly, SZA<70		2 x10 ¹⁸ 0-2k 0.1 - 1 0.		0-2 km: 20ppbv 2km–tropopause: 20 ppbv 0.05		Track anthropogenic burning plumes; obs pieces of information sensitivity to the low	
	AOD							Observe total aerose and transport; climated	
	NO2	Hourly, SZA<70		6 x 10	×10 ¹⁵ 1×10		15	Distinguish backgrou polluted scenes; atn	
4	Additional atmospheric measurements over Land/Coastal areas, bas								
	Species		Time resolution	Typical value 21.0x1016		Precision ²	Description		
Ultraviolet/			3/day, SZA			10 ¹⁶ 1×10 ¹⁶		Observe biogenic V expected to peak at	
visible	SO2*		3/day, SZA	<50	1×10	16	1×10 ¹⁶	Identify major polluti emissions; atmosph	
spacios	СН4		2/day		4 x10		20 ppbv	Observe anthropoge emissions sources	
species	NH3		2/day		2x10	16	0-2 km: 2ppbv	Observe agricultural	
(GOME,	сносно*		* 2/day		2x10 ¹⁴		4×10 ¹⁴	Detect VOC emission formation, atmospheric	
TEMPO, AAOD		Hourly, SZ		A<70 0 - 0		.05	0.02	Distinguish smoke a UV absorbing aeros	
etc 712/16	AI		Hourly, SZ	٩<70	-1 – -	+5	0.1	Detect aerosols nea over snow/ice; aeros	
	AOCH					hla	1 4 100	Determine plume he	

JA	Atmospheric measurements over Land/Coastal areas, baseline and threshold: [A to K]								
and the second sec	Species	Time resolution	Typical value ²		Precision ²		Description		
	03	Hourly, SZA<70	9 x10 ¹⁸		0-2 km: 10 ppbv 2km–tropopause: 15 ppbv Stratosphere: 5%		Observe O3 with two pieces of information in the troposphere with sensitivity to the lowest 2 km for surface AQ; also transport, climate forcing		
Infrared species	co	Hourly, day and night	2 x10 ¹⁸		0-2 km: 20ppbv 2km–tropopause: 20 ppbv		Track anthropogenic and biomass burning plumes; observe CO with two pieces of information in the vertical with sensitivity to the lowest 2 km in daylight		
	AOD	Hourly, SZA<70	0.1 – 1		0.05		Observe total aerosol; aerosol sources and transport; climate forcing		
Z V	NO2	Hourly, SZA<70	6 x10 ¹⁵		1×10 ¹⁵		Distinguish background from enhanced/ polluted scenes; atmospheric chemistry		
9	Additional atmospheric measurements over Land/Coastal areas, baseline only: A to K								
	Species	Species Time resolution		Typic value	e ² Precision ²		Description		
Ultraviolet/	нсно*	3/day, SZA	<50	<50 1.0x1		1×10 ¹⁶	Observe biogenic VOC emissions, expected to peak at midday; chemistry		
visible	SO2*	3/day, SZA	3/day, SZA<50		¹⁶ 1×10 ¹⁶		Identify major pollution and volcanic emissions; atmospheric chemistry		
spacios	СН4	2/day	2/day		0 ¹⁹ 20 ppbv		Observe anthropogenic and natural emissions sources		
species	NH3 2/day		2x10		16	0-2 km: 2ppbv	Observe agricultural emissions		
(GOME,	GONE, CHOCHO* 2/da		2/day		14	4×10 ¹⁴	Detect VOC emissions, aerosol formation, atmospheric chemistry		
TEMPO,	AAOD	Hourly, SZ	A<70 0-		.05 0.02		Distinguish smoke and dust from non- UV absorbing aerosols; climate forcing		
etc. 712/16	etc 7/12/16 Al Hourly, SZ		A<70 -1 -		⊧5 0.1		Detect aerosols near/above clouds and over snow/ice; aerosol events		
	АОСН	Hourly, SZ	A<70	Varia	ble	1 km	Determine plume height; large scale transport, conversions from AOD to PM		

LEO lessons learned

• What enables us to make measurements of the critical set of gases to 2-5×10⁻⁴ of the full-scale measured radiances?

• What is the state of the art for UV/visible spectroscopy of the atmosphere from space?

 What does that imply for near-term monitoring from space? What are the limitations?

What do we measure?

GOME irradiance, radiance, and albedo spectrum for high-albedo (fully cloudy) ground pixel

Optical Depths for Typical GEO Measurement Geometry

Optical Depths for Typical GOME Measurement Geometry

Why the Smithsonian?

Langley, S.P., and C.G. Abbot, *Annals of the Astrophysical Observatory of the Smithsonian Institution, Volume 1* (1900).

Langley's recently invented bolometer was used to make measurements from the infrared through the near ultraviolet in order to determine the mean value of the solar constant and its variation. Langley and Abbot also developed substantial new experimental techniques (such as an early chart recorder) and various analysis techniques (*e.g.*, the "Langley plot"), including photographic techniques for high and low pass filtering to produce line spectra from "bolographs" (spectra), illustrated, foreshadowing the high pass filtering used today by researchers employing the DOAS technique for analyzing atmospheric spectra.

1. Don't define your algorithm in advance - Test all steps for utility and applicability - Let the physics guide you 2. No black boxes - You must have and understand all source code, and be able to modify it as necessary - You must test all assumptions 3. Fitters must go to bedrock: (Occam's taser): If you didn't do it yourself, it isn't done (and you have to do it down to bedrock and also understand and publish all the reasons why you did it that way) 4. Reference data as used must be peer-reviewed, published, and publicly-available (P^3) - no unexplained shifts in cross sections, for example 5. A description of the analysis as performed must be publicly available.

6. Ecclesiastes 11:1Cast thy bread upon the waters: for thou shall find it after many days.

Spectrum fitting and radiative transfer correction

Frustra fit per plura, quod fieri potest per pauciora. Essentia non sunt multiplicada praeter necessitatem.

- William of Occam

Fitting trace species

- HCHO is the most challenging gas to fit for slant columns in GOME spectra (HCHO > CHO-CHO > NO_2 > SO_2 > OCIO > O_3 (depending) > BrO)
- Requires precise (dynamic) wavelength calibration, Ring effect correction, undersampling correction, and proper choices of reference spectra (HITRAN!)
- Best fitting results come from direct fitting of GOME radiances, *I* or *I/E* (except for tropospheric ozone)

Algorithm Overview

- Direct fitting of GOME radiances by nonlinear least-squares fitting:
 - Simpler Ring effect formulation (no induced Fraunhofer structure or induced wavelength mismatch
 - Less distortion of measured data (no high-pass filtering)
- Correction for:
 - Wavelength calibration
 - Ring effect
 - Spectral undersampling
 - Instrument transfer (slit) function
- Division by air-mass factor (AMF) using LIDORT radiative transfer model and GEOS-CHEM 3-D tropospheric chemistry and transport model
 - Tropospheric residuals may require further
 - adjustment (e.g., for NO₂)

Fitting approach: Nonlinear least-squares fitting of radiances with <u>lots</u> of optimization

Radiance *R* is fitted directly ("BOAS fitting") as:

$$R = A(\lambda)I_0 e^{-\sum \tau_n} + Ring + closure(\lambda) \quad N.B. \Delta \lambda!$$

Further manipulation for Beer's law fitting gives:

$$\ln \frac{R}{I_0} = -A(\lambda) \sum \tau_n + \frac{Ring}{I_0} + higher - order - Ring + closure(\lambda)$$

But: It's not a linear fitting problem!

"DOAS" fitting adds high-pass filtering ("H") to give:

$$H\left(\ln\frac{R}{I_0}\right) = -A(\lambda)\sum H(\tau_n) + H\left(\frac{Ring}{I_0}\right) + closure(\lambda)$$

Direct "BOAS" fitting gives a factor of 2-3 improvement!

GOME BrO fitting for the FIRS-2 overflight on April 30, 1997. The integration time is 1.5s. The fitting precision is 4.2% and the RMS is 2.7×10^{-4} in optical depth. Fitting and inversion give a vertical BrO column of 9.3×10^{13} cm⁻².

High resolution solar reference spectrum

Upper panel: The SAO2010 irradiance reference spectrum (photons s⁻¹ cm⁻² nm⁻¹). Lower panel: Irradiance on a logarithmic scale.

An improved high-resolution solar reference spectrum for Earth's atmosphere measurements in the ultraviolet, visible, and near infrared, K. Chance and R.L. Kurucz, JQSRT, 2010, <u>http://www.cfa.harvard.edu/atmosphere/publications.html</u>

Ring effect correction spectrum

(a) Fraunhofer reference spectrum for the NO₂ fitting region; (b) Fraunhofer convolved to GOME spectral resolution; (c) = (b) convolved with rotational Raman cross-sections = Ring effect scattering source per molecule; (d) High-pass filtered version of (c) / (b) = DOAS "Ring effect correction."

GOME BrO fitting: Relative contributions absorption by atmospheric BrO (top) and the Ring effect - the inelastic, mostly rotational Raman, part of the Rayleigh scattering – (bottom).

Top-of-atmosphere solar spectral irradiance

The high resolution solar spectral irradiance is critical in analyzing atmospheric trace gases:

- Solar lines are source of accurate wavelength calibration (±0.0003-0.0004 nm for GOME!) – Our method now used operationally on GOME, SCIAMACHY, OMI, and OMPS – Adapted from CfA galactic redshift survey
- Determination of the Ring effect (Inelastic part of Rayleigh, mostly RR)
- Improved knowledge of instrument slit functions
- Correction for spectral undersampling
- Photochemistry of Schumann-Runge system

A space-based determination would be an ideal support mission for 12+ international atmospheric missions!

- Range: 240-1000+ nm
- FWHM: 0.01 nm or better
- Ideal FTS Space Shuftle Canadian European Asian experiment

GEOS-CHEM global 3D tropospheric chemistry and transport model

- Driven by NASA GMAO met data
- ≤2×2.5° resolution/26 vertical levels
- O₃-NO_x-VOC-halogen chemistry
- VOC NO_x, SO₂ emissions
- Aerosol scattering

LIDORT multiple-scattering radiative transfer code (*R. Spurr*)

- Discrete ordinate radiative transfer code
- Full analytical perturbation analysis of intensity field:
 - Yields radiances and Jacobians (weighting functions) in one pass (no finite-differencing)
- Pseudo-spherical and quasi-spherical versions
 available
- Surface BRDF
- Vector (polarization) version (VLIDORT) now used

Determination of air mass factors (AMFs), for converting measured slant column abundances in vertical column abundances, for absorption by atmospheric gases. In the optically thin case, the air mass factor calculation is separable into a radiative transfer part ("scattering weights") and a normalized atmospheric loading ("shape factor").

An AMF calculation should be done for every scene.

GOME, SCIAMACHY, and OMI measurement examples

Kilauea activity, source of the VOG event in Honolulu on 9 November 2004

CfA

soprene estimates revising emissions models • El Niño helping to explain the effects of global warming on weather • Fluid injection inducing underground seismicity

HCH

Smithsonian Astrophysical Observatory

An orbit of retrievals at OMI across-track position 16 (in the UV-1 channel) for July 11, 2006 as a function of latitude, longitude, and solar zenith angle. (a) **Ozone profiles in** number density, and (b) the effective cloud fraction (black), fitted surface albedo (purple) for the UV-2 channel, and effective cloudtop pressure (red) used in the retrievals. The white line in (a) indicates the NCEP thermal tropopause.

Smithsonian Astrophysical Observatory

An event of transpacific transport of pollution from East Asia across the North Pacific Ocean to the United States on 5-9 May, 2006

"eXceL" method

CfA

Ozone Profile Retrievals from the Ozone Monitoring Experiment, X. Liu, P.K. Bhartia, K. Chance, R.J.D. Spurr, and T.P. Kurosu, *ACP*, *10*, *2521-2537*, *2010*.

NO₂ — Global Picture (here from OMI)

Tropospheriar Gol NOD (Some for Method) 2008005

 NO_2

NO₂ - Los Angeles

VOC emission inventories derived from H₂CO measurements

Geophysical Research Letters

1 SEPTEMBER 2003 VOLUME 30 NUMBER 17 American Geophysical Union

- Volatile Organic Compound
- Produced from Methane oxidation, isoprene emissions
- Indicator for Air Quality
- Average lifetime: ~1.5 h, against photolysis, OH

Isoprene estimates revising emissions models • El Niño helping to explain the effects of global warming on weather • Fluid injection inducing underground seismicity

SEASONALITY OF GOME HCHO COLUMNS (9/96-8/97)

Largely reflects seasonality of isoprene emissions; general consistency with GEIA but also some notable differences

OMI C₂H₂O₂, March 2007 (<40% cloud cover)

OMI C₂H₂O₂, August 2007 (<40% cloud cover)

Volcanic (and anthropogenic) SO₂

Kilauea activity, source of the VOG event in Honolulu on 9 November 2004

→Air quality forecasting

C. Nowlan *et al*., JGR 2011: GOME-2 SO₂ from optimal estimation

Figure 7. (a, b) SO₂ vertical column density and retrieved SO₂ plume altitude; and their (c, d) measurement noise error; (e, f) smoothing error, (g, h) total solution error; and (i, j) the retrieval degrees-of-freedom for signal (DFS) for the Mt. Kasatochi SO₂ plume on 9 August 2008 for SO2 VCD greater than 1 DU, using z_{ap} =10 km and ε_{zap} =2 km.

Review of the questions

What enables us to make measurements to 2-5×10-4?

- Careful algorithm physics, spectroscopy, calibration What is the state of the art (SOTA)?
- SNR of 3000-5000 @ 0.2-0.4 nm FWHM resolution
- Next UV gas (on Earth)? Maybe nitrous acid (HONO)
- What does the SOTA imply for near-term monitoring from space?
- Enough for UV/visible geostationary monitoring. Like TEMPO.

Where are the limitations?

- In the PBL, ~40% artifacts from instrumentation, radiative transfer (not SNR)
- 20-40% AMF effects, requires improved distributions from CTMs, validation
- N.B. O₃ can be better than H₂CO or NO₂ because no assumptions on height distribution are necessary
- Overcome differences among instruments and algorithms by looking in detail at spectra to rationalize them (e.g., SCIAMACHY versus OMI C₂H₂O₂)
- How might the SOTA be improved?
- Bigger light bucket (photon noise limited) followed by better radiance modeling (e.g., detector nonlinearity)
- Add visible O₃ intentionally. Like TEMPO.

Smithsonian Astrophysical Observatory

The End!