Global Modeling of Air

Quality

Jean-François Lamarque CESM Chief Scientist NCAR

Characteristics of Global Chemistry Modeling

Arneth et al., 2010

Types of global chemistry models

Typical configurations

- Horizontal resolution: 105 -1005 km
- Vertical extent: ≈40-150 km (need stratosphere!)
- Timestep: 20-30 minutes
- Number of species (ACCMIP): 16-120
- Simulation periods: days to centuries

Coarse grid and evaluation/assi milation issues Significant mismatch between model resolution and scale of observations, including most satellites

- Representativeness
- Averaging and variability

Emmons et al., 2015

How good are global models at simulating AQ?

Regional
versus global
modeling:
does
resolution
matter?

	T21	T42	T63	T106	
Mean O_3 burden, Tg	294	284	278	275	
Gross production, Gg/day	12,290	12,130	12,040	11,880	
Gross destruction, Gg/day	12,120	11,650	11,450	11,290	
Net O ₃ production, Gg/day	169	480	594	583	
O ₃ deposition, Gg/day	2,090	2,210	2,250	2,300	
O ₃ stratosphere/troposphere exchange, Gg/day	2,000	1,760	1,670	1,730	
O_3 chemical lifetime, ^a days	24.25	24.34	24.25	24.34	
CH ₄ lifetime versus OH, years	8.06	8.32	8.44	8.57	

^aLifetime defined as burden divided by gross destruction.

Pfister et al., 2014

Regional *versus* global modeling: does resolution matter?

Time series of surface ozone at Lassen

Long-term trends: emissions *versus* transport

Barnes et al., 2016

Distribution of 20-year trends at Lassen

Long-term trends: emissions *versus* transport

Barnes et al., 2016

Observations: living with short records and large internal variability

Total ozone column (Dobson Units)

Farman, 1977

Observations: living with short records and large internal variability

Application: long-range transport and impact of emission reductions

HTAP, 2010

Application: Long-term trends, climate forcing and mortality studies

Stretch-grid: getting more science done with lower computational cost

Image: Sector of the sector

Spectral Element

MPAS

CAM-MPAS coupled with ocean/ice model 500 hPa Vorticity, 15-60 km grid

From B. Skamarock

Questions?