Aerosol retrievals and measurements from space

Jun Wang ARROMA group

Aerosol, Radiation, Remote-sensing, & Observation-based Modeling of Atmosphere

Univ. of Iowa, starting Aug 2016

NCAR ASP Summer Colloquium Advances in Air Quality Analysis and Prediction The Interaction of Science & Policy July 25 - August 5, 2016

Outline

- Introduction to aerosol properties
- Aerosol retrieval with one channel (wavelength)
- Aerosol retrieval with two channels (wavelengths)
- Aerosol retrieval with multiple channels
- Aerosol retrieval with polarization
- Application of satellite-based aerosol data for surface PM2.5
- Future directions

Origin of aerosols

Primary sources: directly from surface

Secondary sources: Atmospheric chemistry

Aerosols have large spatiotemporal variations (minutes-hours, meters to kilometers).

Life cycle and importance of tropospheric aerosols

MODIS global true color image 25 July 2016

Clouds: White; Bare soil: Yellowish; Canopy: Green; Ocean: dark

What is the color of an aerosol layer?

https://worldview.earthdata.nasa.gov/

Aerosol observation from space by solar backscatter

Dust

Smoke

Haze

Scattering regimes

The scattering of solar and terrestrial radiation by atmospheric aerosols and clouds is mostly in the Mie scattering regime.

Aerosol scattering of solar radiation depends on

The chemical composition of aerosols highly vary in space & time; So do aerosol optical properties.

We can not obtain all aerosol properties from space.

The parameter commonly retrieved with good accuracy:

Aerosol Optical Depth (AOD) or Aerosol Optical Thickness (AOT) or τ

 τ is generally retrieved from satellite visible channels over clear sky conditions (Wang et al., 2003).

Phy. Met. class

Retrieval of AOD from one channel

single scattering, low R_{sfc} (<0.1)

Key factors : ω , P(θ), and R_{sfc}

Refractive index, Size, Shape, etc

Plate 2. Mean distribution of τ_{SAT1}^A at 0.5 μ m for 2 years prior to the eruption of Mount Pinatubo.

The retrieval has very large uncertainties

Figure 2. Regression of τ_{SAT1}^{A} against Sun-photometer aerosol optical thickness at 0.5- μ m wavelength.

Two – channel retrieval algorithm

Wavelength dependence can be used as an indicator to the aerosol size Angstrom's [1929] empirical expression is given

 $\tau_a = \beta \lambda^{-\alpha}$

Eck et al., JGR, 1999

Urban aerosols in Washing DC

Dust aerosols in Mongolia

(1)

AOD retrieval from AVHRR two channels

Mishchenko et al., 1999

Ignatov et al., 1998.

The larger the wavelength dependence of AOD, the smaller the particle size

Challenges: land surface reflectance

$$R_{sat} = R_{sfc} + \frac{\omega \tau P(\theta)}{4\mu\mu_0}$$

Only valid when Rsfc is small.

Reflectance over ocean is low and relatively homogenous.

When surface gets brighter, aerosol absorbs more light reflected by the surfaces, thereby reducing the surface vs. top-of-atmosphere contrast; not favorable for retrieval. Kaufman and Fraser, 1985

Aerosol Effects on Reflected Solar Radiation over Land

Smoke signal is weaker in NIR

King et al., BAMS, 1999

Using NIR reflectance to derive VIS

How aerosol optical properties are calculated?

The selection of aerosol optical model primarily is primarily based on geographical locations.

Lastest version of aerosol climatology in MODIS retrieval (Levy et al., 2013)

Red and green: absorbing (SSA ~0.85) or nonabsorbing (SSA~ 0.95). Moderately absorbing (SSA~ 0.90) is assumed everywhere else.

MODIS AOD

MODIS AOD. (a) fine mode AOD ; (b) coarse mode AOD, September 2000

Validation of AOD

Validation of Angstrom exponent over ocean only; overland is not recommended to use

Fig. 17. Frequency scatter plots for AE at $0.55/0.86 \mu m$ over DTocean compared to AERONET (gray and color dots) and MAN (black dots), plotted from 6 months of Aqua (January and July; 2003, 2008 and 2010), computed with C5 algorithm (a) and C6 algorithm (b). One-one lines and EE envelopes (± 0.45) are plotted as solid and dashed lines. Collocation statistics are presented in each panel.

Global map of AOD

Deep-blue algorithm (Hsu et al., 2013) and Dark-target algorithm (Levy et al., 2016)

Enhancing sensitivity to thin aerosols

Thin haze over land is difficult to detect in the nadir view due to the brightness of the land surface

The longer atmospheric path length enhances the haze path radiance

Avoiding sunglint

Sunglint over water invalidates the assumption of a dark surface, and multiple cameras provide the flexibility to avoid this

smoke

MISR aerosol retrievals require glitter avoidance of at least 40°

Optical depth September 2005 F06_0017 Summarizes L2 AS_AEROSOL, RegMeanSpectralOptDepth field F09_0017, 0.5 deg res

Optical depth (Band 3, 558 nm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Radiance and Polarization Measurements from POLDER

- R = 0.865 μm
- $G = 0.670 \ \mu m$
- B = 0.443 μm

Notice the land

Aerosol Optical Thickness

Ångström Exponent

SATELLITE MEASUREMENTS OF AEROSOL MASS AND TRANSPORT

Atmospheric Environment, 1984.

ROBERT S. FRASER

Laboratory for Atmospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

YORAM J. KAUFMAN

University of Maryland in collaboration with Goddard Laboratory for Atmospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

and

R. L. MAHONEY

Science Systems and Applications, Inc. 10210 Greenbelt Road, Seabrook, MD 20706, U.S.A.

Fig. 3. Algorithm for deriving aerosol properties from satellite observations.

Atmospheric loading of particulate sulfur (gm⁻²) on 31 July 1980.

Derived from GOES visible reflectance are

- Aerosol optical thickness (AOT)/depth (AOD)
- Columnar amount of sulfur

Table 1. Comparison of columnar masses of sulfur derived from ground-based and satellite observations. The satellite observations were made at 1300 GMT on 31 July 1980

1 Place	2 Latitude (deg. N)	3 Longitude (deg. W)	4 Particulate sulfate mass (µg m ⁻³)	5 Columnar sulfur mass (g m ⁻²)	6 Reference	7 Satellite sulfur mass (g m ⁻²)	8 Ratio columns 7 and 5
Virginia	38.7	78.3	38	0.018	Ferman et	0.040	2.3
Virginia	38.7	78.3	38	0.018	Stevens et al. (1984)	0.040	2.3
Near Baltimore	39.3	76.4	24	0.014	Tichler <i>et</i> <i>al.</i> (1981)	0.017	1.2

Satellite Remote Sensing of Aerosol Transport

Past studies on AOD vs. surface PM concentration

(from Hoff and Christopher, 2009, JAWMA)

	Author	Sensor	Date	Region	Number of Ground Monitors	PM _{2.5} /PM ₁₀	Linear Regression	R
2003	Wang ¹⁵⁴	MODIS (Terra)	2002	Alabama	7	PM _{2.5} (24 hr) ^a	77.0τ - 0.23	0.67
	Ū.	MODIS (Aqua)	2002	Alabama	7	PM _{2.5} (24 hr) ^a	$68.6\tau + 1.93$	0.76
		Average	2002	Alabama	7	PM _{2.5} (24 hr) ^a	$72.3\tau + 0.85$	0.98
	Chu ¹⁵³	MODIS	August–October 2000	Italy	1	PM ₁₀	$54.7\tau + 8.0$	0.82
	Engel-Cox ¹⁶¹	MODIS	April–September	United States	1338	PM _{2.5}	$22.6\tau + 6.4$	0.4
_			2002			PM _{2.5} (24 hr)	$18.7\tau + 7.5$	0.43
	Liu ²⁰⁸	MISR	2003	St. Louis	22	PM _{2.5}	NA	0.8
E	Engel-Cox ¹⁶³	MODIS	July 1 to August 30,	Baltimore	4	PM _{2.5}	$31.1\tau + 5.2$	0.65
			2004			PM _{2.5} (<pbl)< td=""><td>$48.5\tau + 6.2$</td><td>0.65</td></pbl)<>	$48.5\tau + 6.2$	0.65
						PM _{2.5} (24 hr)	$25.3\tau + 11.1$	0.57
						PM _{2.5} (24 hr < PBL)	64.8τ + 1.76	0.76
	Liu ¹⁶⁹	MISR	2001	Eastern United States	346	PM _{2.5}		_
	Al-Saadi ¹⁶⁴	MODIS	Review	United States		PM _{2.5}	62.0τ	NA
	Gupta ¹⁷¹	MODIS	2002 and July– November 2003	Global cities	26	PM ₁₀ ^a	141.0 τ	0.96
	Koelemeijer ¹⁵²	MODIS	2003	Europe	88 (PM _{2.5})	$PM_{2.5}^{a}$	NA	0.63
						PM ₁₀ ^a	214.0 _T - 42.3	0.58
	Kacenelenbogen ¹¹⁸	POLDER	April–October 2003	France	28	PM _{2.5}	$26.6\tau + 13.2$	0.7
	Gupta ¹⁷³	MODIS	February 2000 to	Southeastern	38	PM _{2.5}	$29.4\tau + 8.8$	0.62
			December 2005	United States		PM _{2.5} (24 hr)	$27.5\tau + 15.8$	0.52
	Hutchison ¹⁵⁸	MODIS	August-November	Texas	28	PM _{2.5} (August) ^a	$68.8\tau - 39.9$	0.47
			2003 and 2004			PM _{2.5} (September) ^a	59.7τ - 17.2	0.98
0000	Paciorek ¹⁷⁷	GOES-12	2004	United States	Not given	PM _{2.5} (24 hr)	NA	0.5
2009					-	PM _{2.5} (yearly)	NA	0.75
	An ¹⁷⁹	MODIS	April 3–7, 2005	Beijing	6	PM ₁₀ ^a	$21.7\tau + 6.1$	0.92
			•	-		PM _{2.5} ^a	$31.1\tau + 5.1$	0.92
	tiveriete				le ata	PM _{2.5}	120 ₇ + 5.1	0.72
mui	tivariate re	gression,	r riging, net	itral networ	κ, ετς			

AOD sometimes is a good indicator of surface PM

Engel-Cox et al., 2004, JAWMA.

$$\tau = f(rh) \times Q_{dext}(0) \times m_{daer}(0) \times H_{eff} \quad (1)$$

 $Q_{dext}(0)$ is the mass extinction efficiency (m²g⁻¹) of dry particles at the surface,

m_{daer}(0) is the mass concentration (gm⁻³) of dry aerosol particles at the surface,

f(rh) is a hygroscopic growth factor that considers the change of aerosol extinction efficiencies due to the solubility (hygroscopicity) of aerosols.

H_{eff} is effective scale height (dependent on the shape of aerosol extinction vertical profile)

Integrating satellite & model

Mapping visibility from space

11 - 14 August 2005.

Use MODIS + chemistry transport adjoint model to constrain emissions Prior emission Posterior Emission

Xu, Wang, Henze et al., JGR, 2014

N/A

BC

N/A

Dust

Using satellite data, we found a reduction of SO_2 emission in 2008 as compared to 2006 because of preparation for 2008 Olympics.

We also found a reduction of NO₂ emission in 2008.

Validation results over the ground station

Xiaoguang XU et al., JGR; Wang et al., JGR.

Looking ahead

- Algorithm with more constraints from temporal and spatial continuity and smoothness (Dubovik et al., 2014; Lyapustin et al., 2014)
- Using O2 A + B + polarization to retrieve aerosol height (Wang et al., 2014; Hou et al., 2016)
- Combine MODIS + OMI (Torres et al., 2015)
- Combine observation with models for air quality applications (emissions, surface PM, etc.).
- Geostationary + UV-Vis hyperspectral (TEMPO; Chance et al.)
- Multiple angle + multiple wavelength + polarization (MAIA; Diner et al.)

Associating airborne particle types with adverse health outcomes

Multi-Angle Imager for Aerosols (MAIA)

The following slides are provided by MAIA PI: David Diner JPL

MAIA objective

Coarse particles irritate and inflame our respiratory systems.

Fine particles penetrate deep into our lungs and carry toxins into our bloodstreams. Airborne **particulate matter** (**PM**) is a well-known cause of cardiovascular and respiratory diseases, heart attacks, low birth weight, lung cancer, and premature death.

But the relative toxicity of specific **PM types** is poorly understood.

MAIA is designed to fill this gap in our understanding and enable more cost-effective pollution controls and improved health outcomes.

MAIA investigation approach

The WRF-Chem chemical transport model (CTM) provides initial estimates of the abundances of different aerosol types, along with their vertical distributions. *The MAIA instrument uses* multi-angle and multispectral radiometry and polarimetry to eliminate CTM biases and retrieve fractional aerosol optical depths of different particle types. *Geostatistical models (GSMs)* derived from collocated surface and MAIA measurements relate fractional aerosol optical depths to nearsurface concentrations of major PM constituents. *Geocoded birth, death, and hospital records and epidemiological methodologies* are used to associate PM exposure with adverse health outcomes. MAIA cameras are mounted on a 2-axis gimbal for targeted science operations and calibration

Along-track axis provides step-andstare multiangle imagery (±60° at instrument)

Cross-track axis proves axis to targets off the sub-satellite track (±45° at instrument)

Swath width and spatial resolution

MAIA spectral bands

Band center (nm)	FWHM (nm)				
367	57				
386	56				
445	57	₩ <u></u> 0.0100 -			
543	37				
645	67				
751	4.3				
763	4.8	300 600 900 1200 1500 1800 2100 2400			
862	48	Wavelength (nm)			
945	34				
1620	141	Radiometric Polarimetric			
1888	98				

VNIR and shortwave infrared (SWIR) bands help discriminate particle size. 1888 nm provides cirrus screening

UV bands are sensitive to absorption by iron and aluminum oxides in dust particles, nitrated aromatic and polycyclic aromatic hydrocarbons in organic aerosols, and soot

Multiangle intensity and polarization helps discriminate particle size and shape, and compositional proxies like refractive index

Summary & look ahead

- So far, AOD is still the most reliable variable we retrieve for aerosols;
- Aerosol single scattering abledo, height, size, etc., are coming along;
- Since surface PM is of high concern in AQ, vertical profile of aerosols, for the most, has to come from models data assimilation .

Future Directions

- Geostationary + UV-Vis hyperspectral (TEMPO; Chance et al.)
- Multiple angle + multiple wavelength + polarization (MAIA; Diner et al.)
- Algorithm with more constraints from temporal and spatial continuity and smoothness (Dubovik et al., 2014; Lyapustin et al., 2014)
- Using O2 A + B + polarization to retrieve aerosol height (Wang et al., 2014; Hou et al., 2016)
- Combine MODIS + OMI (Torres et al., 2015)
- Combine observation with models for air quality applications (emissions, surface PM, etc.).

Outlook

An exciting field, with more discoveries & applications to come !

Thank you!

Aerosol observation from space by solar backscatter

(Aerosol = Particulate Matter)

Easy to do qualitatively...

California fire plumes

Pollution off U.S. east coast

Dust off West Africa

...but diifcult quantitatively! Weak spectral structure complicates separation from surface backscatter

Challenges: Aerosol optical property

Challenges: Aerosol optical property

