The value of assimilating different ground-based profiling networks on the forecasts of bore-generating nocturnal convection

Chipilski, H., Wang, X., Parsons, D. B., Johnson, A., Degelia, S. K.. (2022). The value of assimilating different ground-based profiling networks on the forecasts of bore-generating nocturnal convection. Monthly Weather Review, doi:https://doi.org/10.1175/MWR-D-21-0193.1

Title The value of assimilating different ground-based profiling networks on the forecasts of bore-generating nocturnal convection
Genre Article
Author(s) Hristo Chipilski, X. Wang, D. B. Parsons, A. Johnson, S. K. Degelia
Abstract There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Nevertheless, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.
Publication Title Monthly Weather Review
Publication Date Jun 1, 2022
Publisher's Version of Record https://doi.org/10.1175/MWR-D-21-0193.1
OpenSky Citable URL https://n2t.org/ark:/85065/d72z19b0
OpenSky Listing View on OpenSky
EDEC Affiliations

< Back